Search results
Results From The WOW.Com Content Network
Kinetic friction, also known as dynamic friction or sliding friction, occurs when two objects are moving relative to each other and rub together (like a sled on the ground). The coefficient of kinetic friction is typically denoted as μ k , and is usually less than the coefficient of static friction for the same materials.
Sliding friction (also called kinetic friction) is a contact force that resists the sliding motion of two objects or an object and a surface. Sliding friction is almost always less than that of static friction; this is why it is easier to move an object once it starts moving rather than to get the object to begin moving from a rest position.
Kinetic friction on the other hand, occurs when two objects are undergoing relative motion, as they slide against each other. The force F k exerted between the moving objects is equal in magnitude to the product of the normal force N and the coefficient of kinetic friction μ k: | | =. Regardless of the mode, friction always acts to oppose the ...
energy efficiency, economics (ratio of energy input to kinetic motion) Damping ratio = mechanics, electrical engineering (the level of damping in a system) Decibel: dB: acoustics, electronics, control theory (ratio of two intensities or powers of a wave) Elasticity : E
Friction is a force that opposes relative motion of two bodies. At the macroscopic scale, the frictional force is directly related to the normal force at the point of contact. There are two broad classifications of frictional forces: static friction and kinetic friction. [17]: 267
Kinetic energy can be transferred between objects and transformed into other kinds of energy. [10] Kinetic energy may be best understood by examples that demonstrate how it is transformed to and from other forms of energy. For example, a cyclist uses chemical energy provided by food to accelerate a bicycle to a chosen speed.
In such a collision, kinetic energy is lost by bonding the two bodies together. This bonding energy usually results in a maximum kinetic energy loss of the system. It is necessary to consider conservation of momentum: (Note: In the sliding block example above, momentum of the two body system is only conserved if the surface has zero friction.
Without friction to dissipate a body's energy into heat, the body's energy will trade between potential and (non-thermal) kinetic forms while the total amount remains constant. Any gain of kinetic energy, which occurs when the net force on the body accelerates it to a higher speed, must be accompanied by a loss of potential energy.