When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Classification of discontinuities - Wikipedia

    en.wikipedia.org/wiki/Classification_of...

    The function in example 1, a removable discontinuity. Consider the piecewise function = {< = >. The point = is a removable discontinuity.For this kind of discontinuity: The one-sided limit from the negative direction: = and the one-sided limit from the positive direction: + = + at both exist, are finite, and are equal to = = +.

  3. Removable singularity - Wikipedia

    en.wikipedia.org/wiki/Removable_singularity

    A graph of a parabola with a removable singularity at x = 2. In complex analysis, a removable singularity of a holomorphic function is a point at which the function is undefined, but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point.

  4. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    An infinite discontinuity is the special case when either the left hand or right hand limit does not exist, specifically because it is infinite, and the other limit is either also infinite, or is some well defined finite number. In other words, the function has an infinite discontinuity when its graph has a vertical asymptote.

  5. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    Function without a limit at an essential discontinuity. The function = {⁡ < = > has no limit at x 0 = 1 (the left-hand limit does not exist due to the oscillatory nature of the sine function, and the right-hand limit does not exist due to the asymptotic behaviour of the reciprocal function, see picture), but has a limit at every other x ...

  6. Oscillation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Oscillation_(mathematics)

    For example, in the classification of discontinuities: in a removable discontinuity, the distance that the value of the function is off by is the oscillation; in a jump discontinuity, the size of the jump is the oscillation (assuming that the value at the point lies between these limits from the two sides);

  7. Singularity function - Wikipedia

    en.wikipedia.org/wiki/Singularity_function

    The function () is the Heaviside step function: H(x) = 0 for x < 0 and H(x) = 1 for x > 0. The value of H(0) will depend upon the particular convention chosen for the Heaviside step function. Note that this will only be an issue for n = 0 since the functions contain a multiplicative factor of x − a for n > 0.

  8. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Then f is a non-decreasing function on [a, b], which is continuous except for jump discontinuities at x n for n ≥ 1. In the case of finitely many jump discontinuities, f is a step function. The examples above are generalised step functions; they are very special cases of what are called jump functions or saltus-functions. [8] [9]

  9. Removable discontinuity - Wikipedia

    en.wikipedia.org/?title=Removable_discontinuity&...

    This page was last edited on 10 January 2015, at 10:07 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.