Search results
Results From The WOW.Com Content Network
Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.
Bromine is a chemical element; it has symbol Br and atomic number 35. ... electron affinity, enthalpy of dissociation of the X 2 molecule (X = Cl, Br, I), ...
The electron affinity of molecules is a complicated function of their electronic structure. For instance the electron affinity for benzene is negative, as is that of naphthalene, while those of anthracene, phenanthrene and pyrene are positive. In silico experiments show that the electron affinity of hexacyanobenzene surpasses that of fullerene. [5]
The energy required to remove one or more electrons to make a cation is a sum of successive ionization energies; for example, the energy needed to form Mg 2+ is the ionization energy required to remove the first electron from Mg, plus the ionization energy required to remove the second electron from Mg +. Electron affinity is defined as the ...
The energy released when an electron is added to a neutral gaseous atom to form an anion is known as electron affinity. [14] Trend-wise, as one progresses from left to right across a period , the electron affinity will increase as the nuclear charge increases and the atomic size decreases resulting in a more potent force of attraction of the ...
It has a high ionisation energy (1251.2 kJ/mol), high electron affinity (349 kJ/mol; higher than fluorine), and high electronegativity (3.16). Chlorine is a strong oxidising agent (Cl 2 + 2e → 2HCl = 1.36 V at pH 0). Metal chlorides are largely ionic in nature. The common oxide of chlorine (Cl 2 O 7) is strongly acidic. Liquid bromine
where I is the ionization potential and A the electron affinity. This expression implies that the chemical hardness is proportional to the band gap of a chemical system, when a gap exists. The first derivative of the energy with respect to the number of electrons is equal to the chemical potential, μ, of the system,
The downward arrow "electron affinity" shows the negative quantity –EA F, since EA F is usually defined as positive. For ionic compounds, the standard enthalpy of formation is equivalent to the sum of several terms included in the Born–Haber cycle. For example, the formation of lithium fluoride,