Search results
Results From The WOW.Com Content Network
[10] [11] Similar to support vector machine estimators, the maximum entropy principle may require the solution to a quadratic programming problem, and thus provide a sparse mixture model as the optimal density estimator. One important advantage of the method is its ability to incorporate prior information in the density estimation.
Like approximate entropy (ApEn), Sample entropy (SampEn) is a measure of complexity. [1] But it does not include self-similar patterns as ApEn does. For a given embedding dimension, tolerance and number of data points, SampEn is the negative natural logarithm of the probability that if two sets of simultaneous data points of length have distance < then two sets of simultaneous data points of ...
However, as calculated in the example, the entropy of the system of ice and water has increased more than the entropy of the surrounding room has decreased. In an isolated system such as the room and ice water taken together, the dispersal of energy from warmer to cooler always results in a net increase in entropy. Thus, when the "universe" of ...
One major problem lies in the mathematical framework of the Standard Model of physics, which is inconsistent with the theory of general relativity to the point that one or both theories break down under certain conditions (for example, within known spacetime singularities like the Big Bang and the centres of black holes beyond the event horizon ...
In thermodynamics, the entropy of mixing is the increase in the total entropy when several initially separate systems of different composition, each in a thermodynamic state of internal equilibrium, are mixed without chemical reaction by the thermodynamic operation of removal of impermeable partition(s) between them, followed by a time for establishment of a new thermodynamic state of internal ...
Owing to these early developments, the typical example of entropy change ΔS is that associated with phase change. In solids, for example, which are typically ordered on the molecular scale, usually have smaller entropy than liquids, and liquids have smaller entropy than gases and colder gases have smaller entropy than hotter gases.
Figure 1. A thermodynamic model system. Differences in pressure, density, and temperature of a thermodynamic system tend to equalize over time. For example, in a room containing a glass of melting ice, the difference in temperature between the warm room and the cold glass of ice and water is equalized by energy flowing as heat from the room to the cooler ice and water mixture.
Ludwig Boltzmann defined entropy as a measure of the number of possible microscopic states (microstates) of a system in thermodynamic equilibrium, consistent with its macroscopic thermodynamic properties, which constitute the macrostate of the system. A useful illustration is the example of a sample of gas contained in a container.