Ad
related to: what is chiral molecule in science
Search results
Results From The WOW.Com Content Network
A chiral molecule is a type of molecule that has a non-superposable mirror image. The feature that is most often the cause of chirality in molecules is the presence of an asymmetric carbon atom. [16] [17] The term "chiral" in general is used to describe the object that is non-superposable on its mirror image. [18]
In chemistry, a molecule or ion is called chiral (/ ˈ k aɪ r əl /) if it cannot be superposed on its mirror image by any combination of rotations, translations, and some conformational changes. This geometric property is called chirality ( / k aɪ ˈ r æ l ɪ t i / ).
In chemistry, absolute configuration refers to the spatial arrangement of atoms within a molecular entity (or group) that is chiral, and its resultant stereochemical description. [1] Absolute configuration is typically relevant in organic molecules where carbon is bonded to four different substituents.
An autocatalytic chemical reaction is that in which the reaction product is itself a reactive, in other words, a chemical reaction is autocatalytic if the reaction product is itself the catalyst of the reaction. In asymmetric autocatalysis, the catalyst is a chiral molecule, which means that a chiral molecule is catalysing its own production.
The structure of the chiral molecule should be represented in the Fischer projection formula. If the hydroxyl group attached to the highest chiral carbon is on the right-hand side it is referred to as D-series and if on the left-hand side it is called L-series. This nomenclature system has also become obsolete.
The term chiral / ˈ k aɪ r əl / describes an object, especially a molecule, which has or produces a non-superposable mirror image of itself. In chemistry , such a molecule is called an enantiomer or is said to exhibit chirality or enantiomerism .
For chiral examination there is a need to have the right chiral environment. This could be provided as a plane polarized light, an additional chiral compound or by exploiting the inborn chirality of nature. The chiral analytical strategies incorporate physical, biological, and separation science techniques.
Chiral molecules in the receptors in our noses can tell the difference between these things. Chirality affects biochemical reactions, and the way a drug works depends on what kind of enantiomer it is. Many drugs are chiral and it is important that the shape of the drug matches the shape of the cell receptor it is meant to affect.