When.com Web Search

  1. Ad

    related to: derivative of e 2x example equation in excel function cheat sheet printable free

Search results

  1. Results From The WOW.Com Content Network
  2. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    For any functions and and any real numbers and , the derivative of the function () = + with respect to is ′ = ′ + ′ (). In Leibniz's notation , this formula is written as: d ( a f + b g ) d x = a d f d x + b d g d x . {\displaystyle {\frac {d(af+bg)}{dx}}=a{\frac {df}{dx}}+b{\frac {dg}{dx}}.}

  3. Exact differential equation - Wikipedia

    en.wikipedia.org/wiki/Exact_differential_equation

    Given a simply connected and open subset D of and two functions I and J which are continuous on D, an implicit first-order ordinary differential equation of the form (,) + (,) =,is called an exact differential equation if there exists a continuously differentiable function F, called the potential function, [1] [2] so that

  4. Finite difference methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_methods...

    The discrete difference equations may then be solved iteratively to calculate a price for the option. [4] The approach arises since the evolution of the option value can be modelled via a partial differential equation (PDE), as a function of (at least) time and price of underlying; see for example the Black–Scholes PDE. Once in this form, a ...

  5. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    for the nth derivative. When f is a function of several variables, it is common to use "∂", a stylized cursive lower-case d, rather than "D". As above, the subscripts denote the derivatives that are being taken. For example, the second partial derivatives of a function f(x, y) are: [6]

  6. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  7. Backward differentiation formula - Wikipedia

    en.wikipedia.org/wiki/Backward_differentiation...

    The backward differentiation formula (BDF) is a family of implicit methods for the numerical integration of ordinary differential equations.They are linear multistep methods that, for a given function and time, approximate the derivative of that function using information from already computed time points, thereby increasing the accuracy of the approximation.

  8. Derivation (differential algebra) - Wikipedia

    en.wikipedia.org/wiki/Derivation_(differential...

    The partial derivative with respect to a variable is an R-derivation on the algebra of real-valued differentiable functions on R n. The Lie derivative with respect to a vector field is an R-derivation on the algebra of differentiable functions on a differentiable manifold; more generally it is a derivation on the tensor algebra of a manifold

  9. Differential coefficient - Wikipedia

    en.wikipedia.org/wiki/Differential_coefficient

    A coefficient is usually a constant quantity, but the differential coefficient of f is a constant function only if f is a linear function. When f is not linear, its differential coefficient is a function, call it f ′, derived by the differentiation of f, hence, the modern term, derivative. The older usage is now rarely seen.