Search results
Results From The WOW.Com Content Network
Meanwhile, the mathematician Carl Friedrich Gauss was entrusted from 1821 to 1825 with the triangulation of the kingdom of Hanover (Gaussian land survey ), on which he applied the method of least squares to find the best fit solution for problems of large systems of simultaneous equations given more real-world measurements than unknowns.
Measuring the height of a building with an inclinometer. Triangulation today is used for many purposes, including surveying, navigation, metrology, astrometry, binocular vision, model rocketry and, in the military, the gun direction, the trajectory and distribution of fire power of weapons.
The other standard method of levelling in construction and surveying is called trigonometric levelling, which is preferred when levelling "out" to a number of points from one stationary point. This is done by using a total station , or any other instrument to read the vertical, or zenith angle to the rod, and the change in elevation is ...
Information bottleneck method; Inverse chain rule method ; Inverse transform sampling method (probability) Iterative method (numerical analysis) Jacobi method (linear algebra) Largest remainder method (voting systems) Level-set method; Linear combination of atomic orbitals molecular orbital method (molecular orbitals) Method of characteristics
Algebraic functions are functions that can be expressed as the solution of a polynomial equation with integer coefficients. Polynomials: Can be generated solely by addition, multiplication, and raising to the power of a positive integer. Constant function: polynomial of degree zero, graph is a horizontal straight line
The following outline is provided as an overview of and topical guide to trigonometry: Trigonometry – branch of mathematics that studies the relationships between the sides and the angles in triangles. Trigonometry defines the trigonometric functions, which describe those relationships and have applicability to cyclical phenomena, such as waves.
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.