When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    The electrons then pass through Cyt b 6 and Cyt f to plastocyanin, using energy from photosystem I to pump hydrogen ions (H +) into the thylakoid space. This creates a H + gradient, making H + ions flow back into the stroma of the chloroplast, providing the energy for the (re)generation of ATP.

  3. Photosystem II - Wikipedia

    en.wikipedia.org/wiki/Photosystem_II

    Photosystem II (or water-plastoquinone oxidoreductase) is the first protein complex in the energy-dependent reactions of oxygenic photosynthesis. It is located in the thylakoid membrane of plants , algae , and cyanobacteria .

  4. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    The resulting proton gradient across the thylakoid membrane creates a proton-motive force, used by ATP synthase to form ATP. In cyclic photophosphorylation, cytochrome b 6 f uses electrons and energy from PSI to create more ATP and to stop the production of NADPH

  5. Plastoquinone - Wikipedia

    en.wikipedia.org/wiki/Plastoquinone

    Plastoquinone (PQ) is a terpenoid-quinone (meroterpenoid) molecule involved in the electron transport chain in the light-dependent reactions of photosynthesis. The most common form of plastoquinone, known as PQ-A or PQ-9, is a 2,3-dimethyl-1,4-benzoquinone molecule with a side chain of nine isoprenyl units.

  6. Photosystem - Wikipedia

    en.wikipedia.org/wiki/Photosystem

    Reaction centers are multi-protein complexes found within the thylakoid membrane.. At the heart of a photosystem lies the reaction center, which is an enzyme that uses light to reduce and oxidize molecules (give off and take up electrons).

  7. Photosystem I - Wikipedia

    en.wikipedia.org/wiki/Photosystem_I

    Photosystem I [1] is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ferredoxin. Ultimately, the electrons that are transferred by Photosystem I are used to produce the moderate-energy hydrogen carrier NADPH. [2]

  8. Photosynthetic reaction centre - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_reaction_centre

    When the photon has been absorbed, the resulting high-energy electron is transferred to a nearby pheophytin molecule. This is above and to the right of the pair on the diagram and is coloured grey. The electron travels from the pheophytin molecule through two plastoquinone molecules, the first tightly bound, the second loosely bound.

  9. Thylakoid - Wikipedia

    en.wikipedia.org/wiki/Thylakoid

    The thylakoid membranes of higher plants are composed primarily of phospholipids [5] and galactolipids that are asymmetrically arranged along and across the membranes. [6] Thylakoid membranes are richer in galactolipids rather than phospholipids; also they predominantly consist of hexagonal phase II forming monogalacotosyl diglyceride lipid.