Search results
Results From The WOW.Com Content Network
l-DOPA, also known as l-3,4-dihydroxyphenylalanine and used medically as levodopa, is made and used as part of the normal biology of some plants [2] and animals, including humans. Humans, as well as a portion of the other animals that utilize l -DOPA, make it via biosynthesis from the amino acid l -tyrosine .
Levodopa, also known as L-DOPA and sold under many brand names, is a dopaminergic medication which is used in the treatment of Parkinson's disease and certain other conditions like dopamine-responsive dystonia and restless legs syndrome. [3]
Dihydroxyphenylalanine may refer to either of two chemical compounds: D -DOPA (R), 3,4-dihydroxyphenylalanine L -DOPA (S), 3,4-dihydroxyphenylalanine, a precursor of a neurotransmitter
Tyrosine hydroxylase or tyrosine 3-monooxygenase is the enzyme responsible for catalyzing the conversion of the amino acid L-tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA). [5] [6] It does so using molecular oxygen (O 2), as well as iron (Fe 2+) and tetrahydrobiopterin as cofactors.
d-DOPA (D-3,4-dihydroxyphenylalanine; dextrodopa) is similar to L-DOPA (levodopa), but with opposite chirality. Levo- and dextro- rotation refer to a molecule's ability to rotate planes of polarized light in one or the other direction.
3,4-dihydroxyphenylalanine oxidative deaminase (EC 1.13.12.15, 3,4-dihydroxy-L-phenylalanine: oxidative deaminase, oxidative deaminase, DOPA oxidative deaminase, DOPAODA) is an enzyme with systematic name 3,4-dihydroxy-L-phenylalanine:oxygen oxidoreductase (deaminating). [1] This enzyme catalyses the following chemical reaction
The enzyme 3,4-dihydroxyphenylalanine reductive deaminase (EC 4.3.1.22, reductive deaminase, DOPA-reductive deaminase, DOPARDA; systematic name 3,4-dihydroxy-L-phenylalanine ammonia-lyase (3,4-dihydroxyphenylpropanoate-forming)) [1] catalyses the following chemical reaction
Language links are at the top of the page. Search. Search