Search results
Results From The WOW.Com Content Network
The direction of the magnetic field produced by a coil can be determined by the right hand grip rule. If the fingers of the right hand are wrapped around the magnetic core of a coil in the direction of conventional current through the wire, the thumb will point in the direction the magnetic field lines pass through the coil. The end of a ...
The magnetic field lines encircle the current-carrying wire. The magnetic field lines lie in a plane perpendicular to the wire. If the direction of the current is reversed, the direction of the magnetic field reverses. The strength of the field is directly proportional to the magnitude of the current. The strength of the field at any point is ...
A magnetic field in a coil of wire and the electric current in the wire. The force of a magnetic field on a charged particle, the magnetic field itself, and the velocity of the object. The vorticity at any point in the field of the flow of a fluid; The induced current from motion in a magnetic field (known as Fleming's right-hand rule).
The induced magnetic field inside any loop of wire always acts to keep the magnetic flux in the loop constant. The direction of an induced current can be determined using the right-hand rule to show which direction of current flow would create a magnetic field that would oppose the direction of changing flux through the loop. [8]
But when the small coil is moved in or out of the large coil (B), the magnetic flux through the large coil changes, inducing a current which is detected by the galvanometer (G). [ 1 ] Faraday's law of induction (or simply Faraday's law ) is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to ...
When a conductor such as a wire attached to a circuit moves through a magnetic field, an electric current is induced in the wire due to Faraday's law of induction. The current in the wire can have two possible directions. Fleming's right-hand rule gives which direction the current flows.
Direction of magnetic field (B) for an electrical coil. When the fingers are curled to point in direction of conventional current flow ( I ) around the core, the thumb points in the direction of the magnetic field.
Fleming's rules are a pair of visual mnemonics for determining the relative directions of magnetic field, electric current, and velocity of a conductor. [1]There are two rules, one is Fleming's left-hand rule for motors which applies to situations where an electric current induces motion in the conductor in the presence of magnetic fields (Lorentz force).