When.com Web Search

  1. Ad

    related to: edge connectivity in graph theory

Search results

  1. Results From The WOW.Com Content Network
  2. Connectivity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Connectivity_(graph_theory)

    This graph becomes disconnected when the right-most node in the gray area on the left is removed This graph becomes disconnected when the dashed edge is removed.. In mathematics and computer science, connectivity is one of the basic concepts of graph theory: it asks for the minimum number of elements (nodes or edges) that need to be removed to separate the remaining nodes into two or more ...

  3. k-edge-connected graph - Wikipedia

    en.wikipedia.org/wiki/K-edge-connected_graph

    In graph theory, a connected graph is k-edge-connected if it remains connected whenever fewer than k edges are removed. The edge-connectivity of a graph is the largest k for which the graph is k-edge-connected. Edge connectivity and the enumeration of k-edge-connected graphs was studied by Camille Jordan in 1869. [1]

  4. Dynamic connectivity - Wikipedia

    en.wikipedia.org/wiki/Dynamic_connectivity

    In computing and graph theory, a dynamic connectivity structure is a data structure that dynamically maintains information about the connected components of a graph. The set V of vertices of the graph is fixed, but the set E of edges can change. The three cases, in order of difficulty, are:

  5. Menger's theorem - Wikipedia

    en.wikipedia.org/wiki/Menger's_theorem

    The edge-connectivity version of Menger's theorem is as follows: . Let G be a finite undirected graph and x and y two distinct vertices. Then the size of the minimum edge cut for x and y (the minimum number of edges whose removal disconnects x and y) is equal to the maximum number of pairwise edge-disjoint paths from x to y.

  6. Robbins' theorem - Wikipedia

    en.wikipedia.org/wiki/Robbins'_theorem

    In graph theory, Robbins' theorem, named after Herbert Robbins (), states that the graphs that have strong orientations are exactly the 2-edge-connected graphs.That is, it is possible to choose a direction for each edge of an undirected graph G, turning it into a directed graph that has a path from every vertex to every other vertex, if and only if G is connected and has no bridge.

  7. Grinberg's theorem - Wikipedia

    en.wikipedia.org/wiki/Grinberg's_theorem

    Grinberg used his theorem to find non-Hamiltonian cubic polyhedral graphs with high cyclic edge connectivity. The cyclic edge connectivity of a graph is the smallest number of edges whose deletion leaves a subgraph with more than one cyclic component. The 46-vertex Tutte graph, and the smaller cubic non-Hamiltonian polyhedral graphs derived from it

  8. Graph theory - Wikipedia

    en.wikipedia.org/wiki/Graph_theory

    In set theory and graph theory, denotes the set of n-tuples of elements of , that is, ordered sequences of elements that are not necessarily distinct. In the edge ( x , y ) {\displaystyle (x,y)} directed from x {\displaystyle x} to y {\displaystyle y} , the vertices x {\displaystyle x} and y {\displaystyle y} are called the endpoints of the ...

  9. Edge contraction - Wikipedia

    en.wikipedia.org/wiki/Edge_contraction

    Contracting the edge between the indicated vertices, resulting in graph G / {uv}. In graph theory, an edge contraction is an operation that removes an edge from a graph while simultaneously merging the two vertices that it previously joined. Edge contraction is a fundamental operation in the theory of graph minors.