Search results
Results From The WOW.Com Content Network
The terms derive from the colours red and blue which form the extremes of the visible light spectrum. The main causes of electromagnetic redshift in astronomy and cosmology are the relative motions of radiation sources, which give rise to the relativistic Doppler effect , and gravitational potentials, which gravitationally redshift escaping ...
Cherenkov radiation glowing in the core of the Advanced Test Reactor at Idaho National Laboratory. Cherenkov radiation (/ tʃ ə ˈ r ɛ ŋ k ɒ f / [1]) is electromagnetic radiation emitted when a charged particle (such as an electron) passes through a dielectric medium (such as distilled water) at a speed greater than the phase velocity (speed of propagation of a wavefront in a medium) of ...
In physics and general relativity, gravitational redshift (known as Einstein shift in older literature) [1] [2] is the phenomenon that electromagnetic waves or photons travelling out of a gravitational well lose energy. This loss of energy corresponds to a decrease in the wave frequency and increase in the wavelength, known more generally as a ...
The electromagnetic waves in each of these bands have different characteristics, such as how they are produced, how they interact with matter, and their practical applications. Radio waves, at the low-frequency end of the spectrum, have the lowest photon energy and the longest wavelengths—thousands of kilometers, or more.
In spectroscopy, bathochromic shift (from Greek βαθύς (bathys) 'deep' and χρῶμα (chrōma) 'color'; hence less common alternate spelling "bathychromic") is a change of spectral band position in the absorption, reflectance, transmittance, or emission spectrum of a molecule to a longer wavelength (lower frequency). [1]
There are many ways in which atoms can be brought to an excited state. Interaction with electromagnetic radiation is used in fluorescence spectroscopy, protons or other heavier particles in particle-induced X-ray emission and electrons or X-ray photons in energy-dispersive X-ray spectroscopy or X-ray fluorescence. The simplest method is to heat ...
Rubies, emeralds, and diamonds exhibit red fluorescence under long-wave UV, blue and sometimes green light; diamonds also emit light under X-ray radiation. Fluorescence in minerals is caused by a wide range of activators. In some cases, the concentration of the activator must be restricted to below a certain level, to prevent quenching of the ...
An auxochrome is known as a functional group that produces a bathochromic shift, also known as red shift because it increases the wavelength of absorption, therefore moving closer to infrared light. Woodward−Fieser rules estimate the shift in wavelength of maximum absorption for several auxochromes attached to a conjugated system in an ...