When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shannon–Hartley theorem - Wikipedia

    en.wikipedia.org/wiki/Shannon–Hartley_theorem

    It connects Hartley's result with Shannon's channel capacity theorem in a form that is equivalent to specifying the M in Hartley's line rate formula in terms of a signal-to-noise ratio, but achieving reliability through error-correction coding rather than through reliably distinguishable pulse levels.

  3. Shannon capacity of a graph - Wikipedia

    en.wikipedia.org/wiki/Shannon_capacity_of_a_graph

    The Shannon capacity of a graph G is bounded from below by α(G), and from above by ϑ(G). [5] In some cases, ϑ(G) and the Shannon capacity coincide; for instance, for the graph of a pentagon, both are equal to √ 5. However, there exist other graphs for which the Shannon capacity and the Lovász number differ. [6]

  4. Channel capacity - Wikipedia

    en.wikipedia.org/wiki/Channel_capacity

    An application of the channel capacity concept to an additive white Gaussian noise (AWGN) channel with B Hz bandwidth and signal-to-noise ratio S/N is the Shannon–Hartley theorem: C = B log 2 ⁡ ( 1 + S N ) {\displaystyle C=B\log _{2}\left(1+{\frac {S}{N}}\right)\ }

  5. Noisy-channel coding theorem - Wikipedia

    en.wikipedia.org/wiki/Noisy-channel_coding_theorem

    The channel capacity can be calculated from the physical properties of a channel; for a band-limited channel with Gaussian noise, using the Shannon–Hartley theorem. Simple schemes such as "send the message 3 times and use a best 2 out of 3 voting scheme if the copies differ" are inefficient error-correction methods, unable to asymptotically ...

  6. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem ...

  7. A Mathematical Theory of Communication - Wikipedia

    en.wikipedia.org/wiki/A_Mathematical_Theory_of...

    Shannon's diagram of a general communications system, showing the process by which a message sent becomes the message received (possibly corrupted by noise) This work is known for introducing the concepts of channel capacity as well as the noisy channel coding theorem. Shannon's article laid out the basic elements of communication:

  8. Binary symmetric channel - Wikipedia

    en.wikipedia.org/wiki/Binary_symmetric_channel

    Converse of Shannon's capacity theorem [ edit ] The converse of the capacity theorem essentially states that 1 − H ( p ) {\displaystyle 1-H(p)} is the best rate one can achieve over a binary symmetric channel.

  9. Lovász number - Wikipedia

    en.wikipedia.org/wiki/Lovász_number

    In graph theory, the Lovász number of a graph is a real number that is an upper bound on the Shannon capacity of the graph. It is also known as Lovász theta function and is commonly denoted by (), using a script form of the Greek letter theta to contrast with the upright theta used for Shannon capacity.