Search results
Results From The WOW.Com Content Network
As such, a DataFrame can be thought of as having two indices: one column-based and one row-based. Because column names are stored as an index, these are not required to be unique. [9]: 103–105 If data is a Series, then data['a'] returns all values with the index value of a. However, if data is a DataFrame, then data['a'] returns all values in ...
A[-1, *] % The last row of A A[[1:5], [2:7]] % 2d array using rows 1-5 and columns 2-7 A[[5:1:-1], [2:7]] % Same as above except the rows are reversed Array indices can also be arrays of integers. For example, suppose that I = [0:9] is an array of 10 integers.
In other array types, a slice can be replaced by an array of different size, with subsequent elements being renumbered accordingly – as in Python's list assignment "A[5:5] = [10,20,30]", that inserts three new elements (10, 20, and 30) before element "A[5]". Resizable arrays are conceptually similar to lists, and the two concepts are ...
A matrix is said to be in reduced row echelon form if furthermore all of the leading coefficients are equal to 1 (which can be achieved by using the elementary row operation of type 2), and in every column containing a leading coefficient, all of the other entries in that column are zero (which can be achieved by using elementary row operations ...
Arrays can have multiple dimensions, thus it is not uncommon to access an array using multiple indices. For example, a two-dimensional array A with three rows and four columns might provide access to the element at the 2nd row and 4th column by the expression A[1][3] in the case of a zero-based indexing
Each column containing a leading 1 has zeros in all entries above the leading 1. While a matrix may have several echelon forms, its reduced echelon form is unique. Given a matrix in reduced row echelon form, if one permutes the columns in order to have the leading 1 of the i th row in the i th column, one gets a matrix of the form
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
A pivot position in a matrix, A, is a position in the matrix that corresponds to a row–leading 1 in the reduced row echelon form of A. Since the reduced row echelon form of A is unique, the pivot positions are uniquely determined and do not depend on whether or not row interchanges are performed in the reduction process.