Search results
Results From The WOW.Com Content Network
The conjugate gradient method can also be used to solve unconstrained optimization problems such as energy minimization. It is commonly attributed to Magnus Hestenes and Eduard Stiefel , [ 1 ] [ 2 ] who programmed it on the Z4 , [ 3 ] and extensively researched it.
It is generally used in solving non-linear equations like Euler's equations in computational fluid dynamics. Matrix-free conjugate gradient method has been applied in the non-linear elasto-plastic finite element solver. [7] Solving these equations requires the calculation of the Jacobian which is costly in terms of CPU time and storage. To ...
In optimization, a gradient method is an algorithm to solve problems of the form with the search directions defined by the gradient of the function at the current point. Examples of gradient methods are the gradient descent and the conjugate gradient.
The conjugate gradient method can be derived from several different perspectives, including specialization of the conjugate direction method [1] for optimization, and variation of the Arnoldi/Lanczos iteration for eigenvalue problems. The intent of this article is to document the important steps in these derivations.
Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) is a matrix-free method for finding the largest (or smallest) eigenvalues and the corresponding eigenvectors of a symmetric generalized eigenvalue problem
As with the conjugate gradient method, biconjugate gradient method, and similar iterative methods for solving systems of linear equations, the CGS method can be used to find solutions to multi-variable optimisation problems, such as power-flow analysis, hyperparameter optimisation, and facial recognition. [8]
Whereas linear conjugate gradient seeks a solution to the linear equation =, the nonlinear conjugate gradient method is generally used to find the local minimum of a nonlinear function using its gradient alone. It works when the function is approximately quadratic near the minimum, which is the case when the function is twice differentiable at ...
HiGHS has an interior point method implementation for solving LP problems, based on techniques described by Schork and Gondzio (2020). [10] It is notable for solving the Newton system iteratively by a preconditioned conjugate gradient method, rather than directly, via an LDL* decomposition. The interior point solver's performance relative to ...