Search results
Results From The WOW.Com Content Network
The energy difference between the 6d and 5f subshells is very low. The size of the 5f shell is just enough to allow the electrons to form bonds within the lattice, on the very boundary between localized and bonding behavior. The proximity of energy levels leads to multiple low-energy electron configurations with near equal energy levels.
Plutonium normally has six allotropes and forms a seventh (zeta, ζ) under high temperature and a limited pressure range. [2] [3] [4] These allotropes have very similar energy levels but significantly varying densities and crystal structures.
Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three main isotopes demonstrated usable as fuel in thermal spectrum nuclear reactors, along with uranium-235 and uranium-233. Plutonium-239 has a half-life of 24,110 years. [1]
Plutonium (94 Pu) is an ... Excitation energy 226 Pu [4] 94 132 226.03825(22)# ≥1 ms α 222 U 0+ ... but achieving this level of purity is prohibitively difficult.
Plutonium recovered from LWR spent fuel, while not weapons grade, can be used to produce nuclear weapons at all levels of sophistication, [25] though in simple designs it may produce only a fizzle yield. [26] Weapons made with reactor-grade plutonium would require special cooling to keep them in storage and ready for use. [27]
Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter: 89,875,517,874: depends on density: Deuterium–tritium fusion: 576,000,000 [1] Uranium-235 fissile isotope: 144,000,000 [1] 1,500,000,000
Jay Coghlan, director of Nuclear Watch, said plutonium contamination in the heart of Los Alamos is a concern, particularly as the lab — under the direction of Congress, the Energy Department and ...
Nuclear energy. World Scientific. p. 144. ISBN 978-981-02-4011-0. But there is no doubt that the reactor-grade plutonium obtained from reprocessing LWR spent fuel can readily be used to make high-performance, high-reliability nuclear weaponry, as explained in the 1994 Committee on International Security and Arms Control (CISAC) publication.