When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),

  3. Projected area - Wikipedia

    en.wikipedia.org/wiki/Projected_area

    The geometrical definition of a projected area is: "the rectilinear parallel projection of a surface of any shape onto a plane". This translates into the equation: A projected = ∫ A cos ⁡ β d A {\displaystyle A_{\text{projected}}=\int _{A}\cos {\beta }\,dA} where A is the original area, and β {\displaystyle \beta } is the angle between ...

  4. Surface area - Wikipedia

    en.wikipedia.org/wiki/Surface_area

    A sphere of radius r has surface area 4πr 2.. The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. [1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with ...

  5. Prism (geometry) - Wikipedia

    en.wikipedia.org/wiki/Prism_(geometry)

    A right prism is a prism in which the joining edges and faces are perpendicular to the base faces. [5] This applies if and only if all the joining faces are rectangular. The dual of a right n-prism is a right n-bipyramid. A right prism (with rectangular sides) with regular n-gon bases has Schläfli symbol { }×{n}.

  6. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    The formula for the surface area of a sphere is more difficult to derive: because a sphere has nonzero Gaussian curvature, it cannot be flattened out. The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere.

  7. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    By Cavalieri's principle, the circle therefore has the same area as that region. Consider the rectangle bounding a single cycloid arch. From the definition of a cycloid, it has width 2πr and height 2r, so its area is four times the area of the circle. Calculate the area within this rectangle that lies above the cycloid arch by bisecting the ...

  8. Rectangular cuboid - Wikipedia

    en.wikipedia.org/wiki/Rectangular_cuboid

    its surface area is the sum of the area of all faces: = (+ +). its space diagonal can be found by constructing a right triangle of height c {\displaystyle c} with its base as the diagonal of the a {\displaystyle a} -by- b {\displaystyle b} rectangular face, then calculating the hypotenuse's length using the Pythagorean theorem : d = a 2 + b 2 ...

  9. Solid angle - Wikipedia

    en.wikipedia.org/wiki/Solid_angle

    This formula can also be derived without the use of calculus. Over 2200 years ago Archimedes proved that the surface area of a spherical cap is always equal to the area of a circle whose radius equals the distance from the rim of the spherical cap to the point where the cap's axis of symmetry intersects the cap. [3]