Search results
Results From The WOW.Com Content Network
The Dieckmann condensation, where a molecule with two ester groups reacts intramolecularly, forming a cyclic β-keto ester. In this case, the ring formed must not be strained, usually a 5- or 6-membered chain or ring. Retro-Claisen condensation is the reverse of the title reaction, i.e., the base-induced cleavage of 2-ketoesters
This reaction is important for energy generation and for carbon assimilation. The reaction proceeds via a non-covalently bound citryl-coenzyme A intermediate in a 2-step process (aldol-Claisen condensation followed by the hydrolysis of citryl-CoA).
The enzyme is inhibited by high ratios of ATP:ADP and NADH:NAD, as high concentrations of ATP and NADH show that the energy supply is high for the cell. It is also inhibited by succinyl-CoA and propionyl-CoA, which resembles Acetyl-coA and acts as a competitive inhibitor to acetyl-CoA and a noncompetitive inhibitor to oxaloacetate. [12]
Oxaloacetic acid (also known as oxalacetic acid or OAA) is a crystalline organic compound with the chemical formula HO 2 CC(O)CH 2 CO 2 H. Oxaloacetic acid, in the form of its conjugate base oxaloacetate, is a metabolic intermediate in many processes that occur in animals.
They generally form by the Claisen condensation. The presence of the keto group at the beta position allows them to easily undergo thermal decarboxylation. [7] Gamma-keto acids, Gamma-ketoacids, or 4-oxoacids have the ketone group at the third carbon from the carboxylic acid. Levulinic acid is an example.
The reaction is known as the Claisen reaction and was described by Claisen for the first time in 1890. Discovered the thermally induced rearrangement of allyl phenyl ether in 1912. He details its reaction mechanism in his last scientific publication (1925). In his honor, the reaction has been named the Claisen rearrangement.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
All thiolases, whether they are biosynthetic or degradative in vivo, preferentially catalyze the degradation of 3-ketoacyl-CoA to form acetyl-CoA and a shortened acyl-CoA species, but are also capable of catalyzing the reverse Claisen condensation reaction (reflecting the negative Gibbs energy change of the degradation, which is independent of ...