Search results
Results From The WOW.Com Content Network
Nanomaterials exhibit different chemical and physical properties or biological effects compared to larger-scale counterparts that can be beneficial for drug delivery systems. Some important advantages of nanoparticles are their high surface-area-to-volume ratio, chemical and geometric tunability, and their ability to interact with biomolecules ...
Nanomedicine is the medical application of nanotechnology. [1] Nanomedicine ranges from the medical applications of nanomaterials and biological devices, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology such as biological machines.
For example, drug-conjugated silver nanoparticles are created by reducing silver nitrate with sodium borohydride in the presence of an ionic drug compound. The drug binds to the surface of the silver, stabilizing the nanoparticles and preventing the nanoparticles from aggregation. [11] Metallic nanoparticles typically cross the BBB via ...
These include more durable construction materials, therapeutic drug delivery, and higher density hydrogen fuel cells that are environmentally friendly. Being that nanoparticles and nanodevices are highly versatile through modification of their physiochemical properties, they have found uses in nanoscale electronics, cancer treatments, vaccines ...
Here are some ways nanomaterials are used in cancer treatment: [1] Nano-materials Aerosol Drug delivery systems: Nanoparticles can be loaded with anticancer drugs, improving drug solubility, stability, and targeted delivery to cancer cells. This enhances the drug's therapeutic effect while reducing side effects on healthy tissues. [2]
Nanomaterials can also be used in three-way-catalyst applications, which have the advantage of controlling the emission of nitrogen oxides (NO x), which are precursors to acid rain and smog. [46] In core-shell structure, nanomaterials form shell as the catalyst support to protect the noble metals such as palladium and rhodium. [47]
With the decrease in dimensionality, an increase in surface-to-volume ratio is observed. This indicates that smaller dimensional nanomaterials have higher surface area compared to 3D nanomaterials. Two dimensional (2D) nanomaterials have been extensively investigated for electronic, biomedical, drug delivery and biosensor applications.
The drug can be released by a pH change. Second, mesoporous silica coated UCNPs can be used, where drugs can be stored and released from the porous surface. Thirdly, the drug can be encapsulated and transferred in a hollow UCNP shell. [34] Light-activated processes that deliver or activate medicine are known as photodynamic therapeutic (PDT).