Search results
Results From The WOW.Com Content Network
Schwann cells or neurolemmocytes (named after German physiologist Theodor Schwann) are the principal glia of the peripheral nervous system (PNS). Glial cells function to support neurons and in the PNS, also include satellite cells, olfactory ensheathing cells, enteric glia and glia that reside at sensory nerve endings, such as the Pacinian corpuscle.
Neurilemma (also known as neurolemma, sheath of Schwann, or Schwann's sheath) [1] is the outermost nucleated cytoplasmic layer of Schwann cells (also called neurilemmocytes) that surrounds the axon of the neuron. It forms the outermost layer of the nerve fiber in the peripheral nervous system. [2]
Glial cells known as astrocytes enlarge and proliferate to form a scar and produce inhibitory molecules that inhibit regrowth of a damaged or severed axon. In the peripheral nervous system (PNS), glial cells known as Schwann cells (or also as neuri-lemmocytes) promote repair. After axonal injury, Schwann cells regress to an earlier ...
The inner mesaxon (Terminologia histologica: Mesaxon internum) is the connection between the myelin sheath and the inner part of the cell membrane of the Schwann cell, which is directly opposite the axolemma, i.e. the cell membrane of the nerve fibre ensheathed by the Schwann cell.
The myelin membrane is unique in its relatively high lipid to protein ratio. [17] In the peripheral nervous system axons are myelinated by glial cells known as Schwann cells. In the central nervous system the myelin sheath is provided by another type of glial cell, the oligodendrocyte. Schwann cells myelinate a single axon.
Schwann cells: The PNS equivalent of oligodendrocytes, they help maintain axons and form myelin sheaths in the PNS. [5] Satellite glial cell: Line the surface of neuron cell bodies in ganglia (groups of nerve body cells bundled or connected together in the PNS) [9] Enteric glia: Found in the enteric nervous system, within the gastrointestinal ...
The nonmyelinating Schwann cells are a subgroup of the Schwann cells characterized by not forming myelin. [1]The group of nonmyelinating Schwann cells includes the terminal Schwann cells, present at neuromuscular junctions, the Schwann cells of Remak fibers (also called Remak Schwann cells) and the Schwann cells associated to sensory structures, like tactile corpuscles and lamellar corpuscles.
These occur when a non-myelinating Schwann cell bundles the axons close together by surrounding them. [4] The Schwann cell keeps them from touching each other by squeezing its cytoplasm between the axons. [4] The condition of Remak bundles varies with age. [4] The number of C fiber axons in each Remak bundle varies with location. [3]