Search results
Results From The WOW.Com Content Network
Schwann cells or neurolemmocytes (named after German physiologist Theodor Schwann) are the principal glia of the peripheral nervous system (PNS). Glial cells function to support neurons and in the PNS, also include satellite cells, olfactory ensheathing cells, enteric glia and glia that reside at sensory nerve endings, such as the Pacinian corpuscle.
Neurilemma (also known as neurolemma, sheath of Schwann, or Schwann's sheath) [1] is the outermost nucleated cytoplasmic layer of Schwann cells (also called neurilemmocytes) that surrounds the axon of the neuron. It forms the outermost layer of the nerve fiber in the peripheral nervous system. [2]
Glial cells known as astrocytes enlarge and proliferate to form a scar and produce inhibitory molecules that inhibit regrowth of a damaged or severed axon. In the peripheral nervous system (PNS), glial cells known as Schwann cells (or also as neuri-lemmocytes) promote repair. After axonal injury, Schwann cells regress to an earlier ...
Structure of a typical neuron with Schwann cells in the peripheral nervous system. Neurons are highly specialized for the processing and transmission of cellular signals. Given the diversity of functions performed in different parts of the nervous system, there is a wide variety in their shape, size, and electrochemical properties.
In the peripheral nervous system axons are myelinated by glial cells known as Schwann cells. In the central nervous system the myelin sheath is provided by another type of glial cell, the oligodendrocyte. Schwann cells myelinate a single axon. An oligodendrocyte can myelinate up to 50 axons. [18] The composition of myelin is different in the ...
Satellite glial cells, formerly called amphicytes, [1] are glial cells that cover the surface of neuron cell bodies in ganglia of the peripheral nervous system. Thus, they are found in sensory , sympathetic , and parasympathetic ganglia .
The axolemma is responsible for relaying signals between the neuron and it's Schwann Cells. These signals control the proliferative and myelin-producing functions of the Schwann Cells, and also partly play a role in the regulation of the size of the axon. [2]
Myelin is formed by oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system.Therefore, the first stage of myelinogenesis is often defined as the differentiation of oligodendrocyte progenitor cells (OPCs) or Schwann cell progenitors into their mature counterparts, [4] followed by myelin formation around axons.