Search results
Results From The WOW.Com Content Network
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol {3,3,3}. It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C 5, hypertetrahedron, pentachoron, [1] pentatope, pentahedroid, [2] tetrahedral pyramid, or 4-simplex (Coxeter's polytope), [3] the simplest possible convex 4-polytope, and is analogous to the tetrahedron in three ...
In geometry, a tetrahedron (pl.: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex polyhedra .
4-dimensional hyperpyramid with a cube as base. The hyperpyramid is the generalization of a pyramid in n-dimensional space. In the case of the pyramid, one connects all vertices of the base, a polygon in a plane, to a point outside the plane, which is the peak. The pyramid's height is the distance of the peak from the plane.
[4] The two-dimensional analogue of a 4-polytope is a polygon, and the three-dimensional analogue is a polyhedron. Topologically 4-polytopes are closely related to the uniform honeycombs, such as the cubic honeycomb, which tessellate 3-space; similarly the 3D cube is related to the infinite 2D square tiling.
The bitruncated 5-cell (also called a bitruncated pentachoron, decachoron and 10-cell) is a 4-dimensional polytope, or 4-polytope, composed of 10 cells in the shape of truncated tetrahedra. Topologically, under its highest symmetry, [[3,3,3]], there is only one geometrical form, containing 10 uniform truncated tetrahedra.
Consider a line segment AB as a shape in a 1-dimensional space (the 1-dimensional space is the line in which the segment lies). One can place a new point C somewhere off the line. The new shape, triangle ABC , requires two dimensions; it cannot fit in the original 1-dimensional space.
1983 — Periodic pyramid [101] 1989 — Stowe's A physicist's periodic table: 4-dimensional [102] 1990 — Dufour's periodic tree [103] 1992 — Magarshak & Malinsky's three-dimensional periodic table: Quantum mechanics-based table with group 3 as Sc-Y-La-Ac [104] 2003 — Graphic representations of the periodic system: As a building [105]
Molecular geometry is the three-dimensional arrangement of the atoms that constitute a molecule. It includes the general shape of the molecule as well as bond lengths , bond angles , torsional angles and any other geometrical parameters that determine the position of each atom.