When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pyramid (geometry) - Wikipedia

    en.wikipedia.org/wiki/Pyramid_(geometry)

    4-dimensional hyperpyramid with a cube as base. The hyperpyramid is the generalization of a pyramid in n-dimensional space. In the case of the pyramid, one connects all vertices of the base, a polygon in a plane, to a point outside the plane, which is the peak. The pyramid's height is the distance of the peak from the plane.

  3. 4-polytope - Wikipedia

    en.wikipedia.org/wiki/4-polytope

    In geometry, a 4-polytope (sometimes also called a polychoron, [1] polycell, or polyhedroid) is a four-dimensional polytope. [ 2 ] [ 3 ] It is a connected and closed figure, composed of lower-dimensional polytopal elements: vertices , edges , faces ( polygons ), and cells ( polyhedra ).

  4. Hyperpyramid - Wikipedia

    en.wikipedia.org/wiki/Hyperpyramid

    2-dimensional hyperpyramid with a line segment as base 4-dimensional hyperpyramid with a cube as base. In geometry, a hyperpyramid is a generalisation of the normal pyramid to n dimensions. In the case of the pyramid one connects all vertices of the base (a polygon in a plane) to a point outside the plane, which is the peak. The pyramid's ...

  5. Four-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Four-dimensional_space

    Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called dimensions, to describe the sizes or locations of objects in the everyday world.

  6. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.

  7. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    In geometry, a tetrahedron (pl.: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertices. The tetrahedron is the simplest of all the ordinary convex polyhedra .

  8. Tesseract - Wikipedia

    en.wikipedia.org/wiki/Tesseract

    The regular complex polytope 4 {4} 2, , in has a real representation as a tesseract or 4-4 duoprism in 4-dimensional space. 4 {4} 2 has 16 vertices, and 8 4-edges. Its symmetry is 4 [4] 2, order 32. It also has a lower symmetry construction, , or 4 {}× 4 {}, with symmetry 4 [2] 4, order 16. This is the symmetry if the red and blue 4-edges are ...

  9. Pyramidal number - Wikipedia

    en.wikipedia.org/wiki/Pyramidal_number

    Geometric representation of the square pyramidal number 1 + 4 + 9 + 16 = 30. A pyramidal number is the number of points in a pyramid with a polygonal base and triangular sides. [1] The term often refers to square pyramidal numbers, which have a square base with four sides, but it can also refer to a pyramid with any number of sides. [2]