Search results
Results From The WOW.Com Content Network
The arc length, from the familiar geometry of a circle, is = The area a of the circular segment is equal to the area of the circular sector minus the area of the triangular portion (using the double angle formula to get an equation in terms of ):
Following Archimedes' argument in The Measurement of a Circle (c. 260 BCE), compare the area enclosed by a circle to a right triangle whose base has the length of the circle's circumference and whose height equals the circle's radius. If the area of the circle is not equal to that of the triangle, then it must be either greater or less.
The cross-sectional area (′) of an object when viewed from a particular angle is the total area of the orthographic projection of the object from that angle. For example, a cylinder of height h and radius r has A ′ = π r 2 {\displaystyle A'=\pi r^{2}} when viewed along its central axis, and A ′ = 2 r h {\displaystyle A'=2rh} when viewed ...
The parallel axis theorem can be used to determine the second moment of area of a rigid body about any axis, given the body's second moment of area about a parallel axis through the body's centroid, the area of the cross section, and the perpendicular distance (d) between the axes. ′ = +
The cross-section of the band with the plane at height is the region inside the larger circle of radius given by (2) and outside the smaller circle of radius given by (1). The cross-section's area is therefore the area of the larger circle minus the area of the smaller circle: () = (()) = (()).
A circular mil is a unit of area, equal to the area of a circle with a diameter of one mil (one thousandth of an inch or 0.0254 mm). It is equal to π /4 square mils or approximately 5.067 × 10 −4 mm 2. It is a unit intended for referring to the area of a wire with a circular cross section.
A is the cross-sectional area of the flow, P is the wetted perimeter of the cross-section. More intuitively, the hydraulic diameter can be understood as a function of the hydraulic radius R H, which is defined as the cross-sectional area of the channel divided by the wetted perimeter. Here, the wetted perimeter includes all surfaces acted upon ...
With light scattering off of a particle, the cross section specifies the amount of optical power scattered from light of a given irradiance (power per area). Although the cross section has the same units as area, the cross section may not necessarily correspond to the actual physical size of the target given by other forms of measurement.