When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Penrose diagram - Wikipedia

    en.wikipedia.org/wiki/Penrose_diagram

    Penrose diagram of an infinite Minkowski universe, horizontal axis u, vertical axis v. In theoretical physics, a Penrose diagram (named after mathematical physicist Roger Penrose) is a two-dimensional diagram capturing the causal relations between different points in spacetime through a conformal treatment of infinity.

  3. Minkowski space - Wikipedia

    en.wikipedia.org/wiki/Minkowski_space

    Hermann Minkowski (1864–1909) found that the theory of special relativity could be best understood as a four-dimensional space, since known as the Minkowski spacetime.. In physics, Minkowski space (or Minkowski spacetime) (/ m ɪ ŋ ˈ k ɔː f s k i,-ˈ k ɒ f-/ [1]) is the main mathematical description of spacetime in the absence of gravitation.

  4. Spacetime diagram - Wikipedia

    en.wikipedia.org/wiki/Spacetime_diagram

    While a frame at rest in a Minkowski diagram has orthogonal spacetime axes, a frame moving relative to the rest frame in a Minkowski diagram has spacetime axes which form an acute angle. This asymmetry of Minkowski diagrams can be misleading, since special relativity postulates that any two inertial reference frames must be physically ...

  5. Null infinity - Wikipedia

    en.wikipedia.org/wiki/Null_infinity

    The Penrose diagram for Minkowski spacetime. Radial position is on the horizontal axis and time is on the vertical axis. Null infinity is the diagonal boundary of the diagram, designated with script 'I'. The metric for a flat Minkowski spacetime in spherical coordinates is = + +.

  6. Light cone - Wikipedia

    en.wikipedia.org/wiki/Light_cone

    Commonly a Minkowski diagram is used to illustrate this property of Lorentz transformations. Elsewhere, an integral part of light cones is the region of spacetime outside the light cone at a given event (a point in spacetime). Events that are elsewhere from each other are mutually unobservable, and cannot be causally connected.

  7. Causal structure - Wikipedia

    en.wikipedia.org/wiki/Causal_structure

    Subdivision of Minkowski spacetime with respect to a point in four disjoint sets. The light cone, the causal future, the causal past, and elsewhere.The terminology is defined in this article.

  8. Penrose transform - Wikipedia

    en.wikipedia.org/wiki/Penrose_transform

    Abstractly, the Penrose transform operates on a double fibration of a space Y, over two spaces X and Z. In the classical Penrose transform, Y is the spin bundle, X is a compactified and complexified form of Minkowski space (which as a complex manifold is (,)) and Z is the twistor space (which is ).

  9. Geodesics in general relativity - Wikipedia

    en.wikipedia.org/wiki/Geodesics_in_general...

    In Minkowski space there is only one geodesic that connects any given pair of events, and for a time-like geodesic, this is the curve with the longest proper time between the two events. In curved spacetime, it is possible for a pair of widely separated events to have more than one time-like geodesic between them.