Search results
Results From The WOW.Com Content Network
where ρ is the density of the substance under the applicable conditions. The corresponding expression for the ratio of specific heat capacities remains the same since the thermodynamic system size-dependent quantities, whether on a per mass or per mole basis, cancel out in the ratio because specific heat capacities are intensive properties. Thus:
The term specific heat may also refer to the ratio between the specific heat capacities of a substance at a given temperature and of a reference substance at a reference temperature, such as water at 15 °C; [5] much in the fashion of specific gravity. Specific heat capacity is also related to other intensive measures of heat capacity with ...
Since both the heat capacity of an object and its volume may vary with temperature, in unrelated ways, the volumetric heat capacity is usually a function of temperature too. It is equal to the specific heat () of the substance times its density (mass per volume) (), both measured at the temperature .
In heat transfer analysis, thermal diffusivity is the thermal conductivity divided by density and specific heat capacity at constant pressure. [1] It is a measure of the rate of heat transfer inside a material and has SI units of m 2 /s. It is an intensive property.
Thus, the ratio of the two values, γ, decreases with increasing temperature. However, when the gas density is sufficiently high and intermolecular forces are important, thermodynamic expressions may sometimes be used to accurately describe the relationship between the two heat capacities, as explained below.
A related concept is the perfect fluid equation of state ... is the specific heat capacity at constant ... Both terms are explicit in temperature and density: (, ...
This relation was built on the reasoning that energy must be supplied to raise the temperature of the gas and for the gas to do work in a volume changing case. According to this relation, the difference between the specific heat capacities is the same as the universal gas constant. This relation is represented by the difference between Cp and Cv:
The heat capacity can usually be measured by the method implied by its definition: start with the object at a known uniform temperature, add a known amount of heat energy to it, wait for its temperature to become uniform, and measure the change in its temperature.