Search results
Results From The WOW.Com Content Network
Ellipsoidal coordinates are a three-dimensional orthogonal coordinate system (,,) that generalizes the two-dimensional elliptic coordinate system. Unlike most three-dimensional orthogonal coordinate systems that feature quadratic coordinate surfaces , the ellipsoidal coordinate system is based on confocal quadrics .
An ellipsoid is a surface that can be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.. An ellipsoid is a quadric surface; that is, a surface that may be defined as the zero set of a polynomial of degree two in three variables.
Prolate spheroidal coordinates μ and ν for a = 1.The lines of equal values of μ and ν are shown on the xz-plane, i.e. for φ = 0.The surfaces of constant μ and ν are obtained by rotation about the z-axis, so that the diagram is valid for any plane containing the z-axis: i.e. for any φ.
Oblate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the non-focal axis of the ellipse, i.e., the symmetry axis that separates the foci.
Pages in category "Three-dimensional coordinate systems" The following 19 pages are in this category, out of 19 total. This list may not reflect recent changes .
(In most applications in geodesy, the ellipsoid is taken to be oblate, a > b; however, the theory applies without change to prolate ellipsoids, a < b, in which case f, e 2, and e′ 2 are negative.) Let an elementary segment of a path on the ellipsoid have length ds. From Figs. 2 and 3, we see that if its azimuth is α, then ds is related to ...
In the differential geometry of surfaces in three dimensions, umbilics or umbilical points are points on a surface that are locally spherical. At such points the normal curvatures in all directions are equal, hence, both principal curvatures are equal, and every tangent vector is a principal direction .
In geometry, a surface S in 3-dimensional Euclidean space is ruled (also called a scroll) if through every point of S, there is a straight line that lies on S. Examples include the plane , the lateral surface of a cylinder or cone , a conical surface with elliptical directrix , the right conoid , the helicoid , and the tangent developable of a ...