Search results
Results From The WOW.Com Content Network
Refraction can give the impression that Earth's surface is flat, curved more convexly than it is, or even that it is concave (this is what happened in various trials of the Bedford Level experiment). The phenomenon of variable atmospheric bending can be seen when distant objects appear to be broken into pieces or even turned upside down.
The Old Bedford River, photographed from the bridge at Welney, Norfolk (2008); the camera is looking downstream, south-west of the bridge. The Bedford Level experiment was a series of observations carried out along a 6-mile (10 km) length of the Old Bedford River on the Bedford Level of the Cambridgeshire Fens in the United Kingdom during the 19th and early 20th centuries to deny the curvature ...
Diagram showing displacement of the Sun's image at sunrise and sunset Comparison of inferior and superior mirages due to differing air refractive indices, n. Atmospheric refraction is the deviation of light or other electromagnetic wave from a straight line as it passes through the atmosphere due to the variation in air density as a function of height. [1]
The Earth's radius is the distance from Earth's center to its surface, about 6,371 km (3,959 mi). While "radius" normally is a characteristic of perfect spheres, the Earth deviates from spherical by only a third of a percent, sufficiently close to treat it as a sphere in many contexts and justifying the term "the radius of the Earth".
Image from space: The spherical surface of planet Earth. Spherical Earth or Earth's curvature refers to the approximation of the figure of the Earth to a sphere.The concept of a spherical Earth gradually displaced earlier beliefs in a flat Earth during classical antiquity and the Middle Ages.
Levelling refraction refers to the systematic refraction effect distorting the results of line levelling over the Earth's surface. In line levelling, short segments of a line are levelled by taking readings through a level from two staffs, one fore and one behind. By chaining together the height differences of these segments, one can compute ...
For example, assuming the Earth is a sphere of radius 6371 km, the surface area of the arctic (north of the Arctic Circle, at latitude 66.56° as of August 2016 [7]) is 2π ⋅ 6371 2 | sin 90° − sin 66.56° | = 21.04 million km 2 (8.12 million sq mi), or 0.5 ⋅ | sin 90° − sin 66.56° | = 4.125% of the total surface area of the Earth.
This index gradient causes refraction of light rays (at a shallow angle to the road) from the sky, bending them into the eye of the viewer, with their apparent location being the road's surface. The Earth's atmosphere acts as a GRIN lens, allowing observers to see the sun for a few minutes after it is actually below the horizon, and observers ...