Search results
Results From The WOW.Com Content Network
This module is subject to page protection.It is a highly visible module in use by a very large number of pages, or is substituted very frequently. Because vandalism or mistakes would affect many pages, and even trivial editing might cause substantial load on the servers, it is protected from editing.
Widely used in many programs, e.g. it is used in Excel 2003 and later versions for the Excel function RAND [8] and it was the default generator in the language Python up to version 2.2. [9] Rule 30: 1983 S. Wolfram [10] Based on cellular automata. Inversive congruential generator (ICG) 1986 J. Eichenauer and J. Lehn [11] Blum Blum Shub: 1986
The Beta distribution on [0,1], a family of two-parameter distributions with one mode, of which the uniform distribution is a special case, and which is useful in estimating success probabilities. The four-parameter Beta distribution , a straight-forward generalization of the Beta distribution to arbitrary bounded intervals [ a , b ...
The following table lists the parameters of LCGs in common use, including built-in rand() functions in runtime libraries of various compilers. This table is to show popularity, not examples to emulate; many of these parameters are poor. Tables of good parameters are available. [10] [2]
Pages in category "Articles with example Python (programming language) code" The following 200 pages are in this category, out of approximately 201 total. This list may not reflect recent changes. (previous page)
It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...
Probability generating functions are particularly useful for dealing with functions of independent random variables. For example: If , =,,, is a sequence of independent (and not necessarily identically distributed) random variables that take on natural-number values, and
If, on the other hand, we know the characteristic function φ and want to find the corresponding distribution function, then one of the following inversion theorems can be used. Theorem. If the characteristic function φ X of a random variable X is integrable, then F X is absolutely continuous, and therefore X has a probability density function.