When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of random number generators - Wikipedia

    en.wikipedia.org/wiki/List_of_random_number...

    These approaches combine a pseudo-random number generator (often in the form of a block or stream cipher) with an external source of randomness (e.g., mouse movements, delay between keyboard presses etc.). /dev/random – Unix-like systems; CryptGenRandom – Microsoft Windows; Fortuna; RDRAND instructions (called Intel Secure Key by Intel ...

  3. Middle-square method - Wikipedia

    en.wikipedia.org/wiki/Middle-square_method

    It is impossible to evenly distribute these digits equally on both sides of the middle number, and therefore there are no "middle digits". It is acceptable to pad the seeds with zeros to the left in order to create an even valued n-digit number (e.g. 540 → 0540). For a generator of n-digit numbers, the period can be no longer than 8 n.

  4. Lehmer random number generator - Wikipedia

    en.wikipedia.org/wiki/Lehmer_random_number_generator

    Therefore, the application using these random numbers must use the most significant bits; reducing to a smaller range using a modulo operation with an even modulus will produce disastrous results. [11] To achieve this period, the multiplier must satisfy a ≡ ±3 (mod 8), [12] and the seed X 0 must be odd.

  5. Random number generation - Wikipedia

    en.wikipedia.org/wiki/Random_number_generation

    Dice are an example of a mechanical hardware random number generator. When a cubical die is rolled, a random number from 1 to 6 is obtained. Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols is generated that cannot be reasonably predicted better than by random chance.

  6. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    For Monte Carlo simulations, an LCG must use a modulus greater and preferably much greater than the cube of the number of random samples which are required. This means, for example, that a (good) 32-bit LCG can be used to obtain about a thousand random numbers; a 64-bit LCG is good for about 2 21 random samples (a little over two million), etc ...

  7. Pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Pseudorandom_number_generator

    For example, squaring the number "1111" yields "1234321", which can be written as "01234321", an 8-digit number being the square of a 4-digit number. This gives "2343" as the "random" number. Repeating this procedure gives "4896" as the next result, and so on. Von Neumann used 10 digit numbers, but the process was the same.

  8. Xorshift - Wikipedia

    en.wikipedia.org/wiki/Xorshift

    Xorshift random number generators, also called shift-register generators, are a class of pseudorandom number generators that were invented by George Marsaglia. [1] They are a subset of linear-feedback shift registers (LFSRs) which allow a particularly efficient implementation in software without the excessive use of sparse polynomials . [ 2 ]

  9. Inverse transform sampling - Wikipedia

    en.wikipedia.org/wiki/Inverse_transform_sampling

    Inverse transformation sampling takes uniform samples of a number between 0 and 1, interpreted as a probability, and then returns the smallest number such that () for the cumulative distribution function of a random variable. For example, imagine that is the standard normal distribution with mean zero and standard deviation one. The table below ...