Search results
Results From The WOW.Com Content Network
The zero-order hold (ZOH) is a mathematical model of the practical signal reconstruction done by a conventional digital-to-analog converter (DAC). [1] That is, it describes the effect of converting a discrete-time signal to a continuous-time signal by holding each sample value for one sample interval. It has several applications in electrical ...
A solution to a discretized partial differential equation, obtained with the finite element method. In applied mathematics, discretization is the process of transferring continuous functions, models, variables, and equations into discrete counterparts. This process is usually carried out as a first step toward making them suitable for numerical ...
A mathematical model such as FOH (or, more commonly, the zero-order hold) is necessary because, in the sampling and reconstruction theorem, a sequence of Dirac impulses, x s (t), representing the discrete samples, x(nT), is low-pass filtered to recover the original signal that was sampled, x(t). However, outputting a sequence of Dirac impulses ...
The Zero-order hold (ZOH) is a mathematical model of the practical reconstruction of sampled signals done by conventional digital-to-analog converters (DAC). When a signal, x(t), is sampled at intervals of length T, we are left with just the discrete sequence : x(nT), for integer values of n.
Then we can use these definitions of (,) and its spatial derivatives to write the equation being simulated as an ordinary differential equation, and simulate the equation with one of many numerical methods. In physical terms, this means calculating the forces between the particles, then integrating these forces over time to determine their motion.
The Whittaker–Shannon interpolation formula or sinc interpolation is a method to construct a continuous-time bandlimited function from a sequence of real numbers. The formula dates back to the works of E. Borel in 1898, and E. T. Whittaker in 1915, and was cited from works of J. M. Whittaker in 1935, and in the formulation of the Nyquist–Shannon sampling theorem by Claude Shannon in 1949.
Polynomial interpolation also forms the basis for algorithms in numerical quadrature (Simpson's rule) and numerical ordinary differential equations (multigrid methods). In computer graphics , polynomials can be used to approximate complicated plane curves given a few specified points, for example the shapes of letters in typography .
Linear interpolation on a data set (red points) consists of pieces of linear interpolants (blue lines). Linear interpolation on a set of data points (x 0, y 0), (x 1, y 1), ..., (x n, y n) is defined as piecewise linear, resulting from the concatenation of linear segment interpolants between each pair of data points.