When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The left null space of A is the same as the kernel of A T. The left null space of A is the orthogonal complement to the column space of A, and is dual to the cokernel of the associated linear transformation. The kernel, the row space, the column space, and the left null space of A are the four fundamental subspaces associated with the matrix A.

  3. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    It follows that the null space of A is the orthogonal complement to the row space. For example, if the row space is a plane through the origin in three dimensions, then the null space will be the perpendicular line through the origin. This provides a proof of the rank–nullity theorem (see dimension above).

  4. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Such an ⁠ ⁠ belongs to ⁠ ⁠ 's null space and is sometimes called a (right) null vector of ⁠. ⁠ The vector ⁠ x {\displaystyle \mathbf {x} } ⁠ can be characterized as a right-singular vector corresponding to a singular value of ⁠ A {\displaystyle \mathbf {A} } ⁠ that is zero.

  5. Kernel (algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(algebra)

    The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix. The kernel of a homomorphism is reduced to 0 (or 1) if and only if the homomorphism is injective, that is if the inverse image of every element consists of a single element. This means that the kernel can be viewed as a measure of the ...

  6. Orthogonal complement - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_complement

    There is a corresponding definition of the right-orthogonal complement. ... refer to the row space, column space, and null space of (respectively), then [4] ( ...

  7. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    More generally, we can factor a complex m×n matrix A, with m ≥ n, as the product of an m×m unitary matrix Q and an m×n upper triangular matrix R.As the bottom (m−n) rows of an m×n upper triangular matrix consist entirely of zeroes, it is often useful to partition R, or both R and Q:

  8. Row equivalence - Wikipedia

    en.wikipedia.org/wiki/Row_equivalence

    Because the null space of a matrix is the orthogonal complement of the row space, two matrices are row equivalent if and only if they have the same null space. The rank of a matrix is equal to the dimension of the row space, so row equivalent matrices must have the same rank.

  9. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    If V is a vector space over a field K, a subset W of V is a linear subspace of V if it is a vector space over K for the operations of V.Equivalently, a linear subspace of V is a nonempty subset W such that, whenever w 1, w 2 are elements of W and α, β are elements of K, it follows that αw 1 + βw 2 is in W.