Search results
Results From The WOW.Com Content Network
This approach departs from the classical logic used in conventional mathematics by denying the general applicability of the law of excluded middle – i.e., not (a ≠ b) does not have to mean a = b. A nilsquare or nilpotent infinitesimal can then be defined. This is a number x where x 2 = 0 is true, but x = 0 need not be true at the same time.
Abelian differentials usually mean differential one-forms on an algebraic curve or Riemann surface. Quadratic differentials (which behave like "squares" of abelian differentials) are also important in the theory of Riemann surfaces. Kähler differentials provide a general notion of differential in algebraic geometry.
This approach departs from the classical logic used in conventional mathematics by denying the law of the excluded middle, e.g., NOT (a ≠ b) does not imply a = b.In particular, in a theory of smooth infinitesimal analysis one can prove for all infinitesimals ε, NOT (ε ≠ 0); yet it is provably false that all infinitesimals are equal to zero. [2]
The precise meaning of the variables and depends on the context of the application and the required level of mathematical rigor. The domain of these variables may take on a particular geometrical significance if the differential is regarded as a particular differential form , or analytical significance if the differential is regarded as a ...
In mathematics education, calculus is an abbreviation of both infinitesimal calculus and integral calculus, which denotes courses of elementary mathematical analysis.. In Latin, the word calculus means “small pebble”, (the diminutive of calx, meaning "stone"), a meaning which still persists in medicine.
"The odds of capturing that moment were infinitesimally smaller than now. Photographs cost money to take as well. Buying the camera, buying the film, developing the film. You'd didn't just shoot ...
In thermodynamics, a reversible process is a process, involving a system and its surroundings, whose direction can be reversed by infinitesimal changes in some properties of the surroundings, such as pressure or temperature.
In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller (indeed, infinitesimally smaller) than any relevant dimension of the body; so that its geometry and the constitutive properties of the material (such as density and stiffness ...