When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Compared to Euclidean geometry, hyperbolic geometry presents many difficulties for a coordinate system: the angle sum of a quadrilateral is always less than 360°; there are no equidistant lines, so a proper rectangle would need to be enclosed by two lines and two hypercycles; parallel-transporting a line segment around a quadrilateral causes ...

  3. Constructions in hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Constructions_in...

    Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed.The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. [1]

  4. Non-Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Non-Euclidean_geometry

    Consequently, hyperbolic geometry is called Lobachevskian or Bolyai-Lobachevskian geometry, as both mathematicians, independent of each other, are the basic authors of non-Euclidean geometry. Gauss mentioned to Bolyai's father, when shown the younger Bolyai's work, that he had developed such a geometry several years before, [ 11 ] though he did ...

  5. Hyperbolic space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_space

    Hyperbolic space, developed independently by Nikolai Lobachevsky, János Bolyai and Carl Friedrich Gauss, is a geometric space analogous to Euclidean space, but such that Euclid's parallel postulate is no longer assumed to hold. Instead, the parallel postulate is replaced by the following alternative (in two dimensions):

  6. Henri Poincaré - Wikipedia

    en.wikipedia.org/wiki/Henri_Poincaré

    [41] [42] In addition, Poincaré's other models of hyperbolic geometry (Poincaré disk model, Poincaré half-plane model) as well as the Beltrami–Klein model can be related to the relativistic velocity space (see Gyrovector space). In 1892 Poincaré developed a mathematical theory of light including polarization.

  7. Timeline of geometry - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_geometry

    1829 – Bolyai, Gauss, and Lobachevsky invent hyperbolic non-Euclidean geometry, 1837 – Pierre Wantzel proves that doubling the cube and trisecting the angle are impossible with only a compass and straightedge, as well as the full completion of the problem of constructibility of regular polygons

  8. Hyperbolic motion - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_motion

    The idea of reducing geometry to its characteristic group was developed particularly by Mario Pieri in his reduction of the primitive notions of geometry to merely point and motion. Hyperbolic motions are often taken from inversive geometry : these are mappings composed of reflections in a line or a circle (or in a hyperplane or a hypersphere ...

  9. Hyperboloid model - Wikipedia

    en.wikipedia.org/wiki/Hyperboloid_model

    In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of n-dimensional hyperbolic geometry in which points are represented by points on the forward sheet S + of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and m ...