Search results
Results From The WOW.Com Content Network
In physics, circular motion is movement of an object along the circumference of a circle or rotation along a circular arc. It can be uniform, with a constant rate of rotation and constant tangential speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves the circular motion ...
A ball in circular motion held by a string tied to a fixed post. The figure at right shows a ball in uniform circular motion held to its path by a string tied to an immovable post. In this system a centripetal force upon the ball provided by the string maintains the circular motion, and the reaction to it, which some refer to as the reactive ...
In accordance with Newton's third law of motion, the body in curved motion exerts an equal and opposite force on the other body. This reactive force is exerted by the body in curved motion on the other body that provides the centripetal force and its direction is from that other body toward the body in curved motion. [40] [41] [42] [43]
A free body diagram is not a scaled drawing, it is a diagram. The symbols used in a free body diagram depends upon how a body is modeled. [6] Free body diagrams consist of: A simplified version of the body (often a dot or a box) Forces shown as straight arrows pointing in the direction they act on the body
A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path.The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Download QR code; Print/export ... and a body or moving centrode. The moving centrode rolls without slip on the fixed centrode. ... An additional diagram is shown on ...
A simple displacement diagram illustrates the follower motion at a constant velocity rise followed by a similar return with a dwell in between as depicted in figure 2. [4] The rise is the motion of the follower away from the cam center, dwell is the motion where the follower is at rest, and return is the motion of the follower toward the cam ...