When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ackermann steering geometry - Wikipedia

    en.wikipedia.org/wiki/Ackermann_steering_geometry

    Modern cars do not use pure Ackermann steering, partly because it ignores important dynamic and compliant effects, but the principle is sound for low-speed maneuvers. Some racing cars use reverse Ackermann geometry to compensate for the large difference in slip angle between the inner and outer front tires while cornering at high speed. The use ...

  3. Ackermann's formula - Wikipedia

    en.wikipedia.org/wiki/Ackermann's_Formula

    In control theory, Ackermann's formula is a control system design method for solving the pole allocation problem for invariant-time systems by Jürgen Ackermann. [1] One of the primary problems in control system design is the creation of controllers that will change the dynamics of a system by changing the eigenvalues of the matrix representing the dynamics of the closed-loop system. [2]

  4. Understeer and oversteer - Wikipedia

    en.wikipedia.org/wiki/Understeer_and_oversteer

    The Understeer Angle is the amount of additional steering (at the road wheels, not the hand wheel) that must be added in any given steady-state maneuver beyond the Ackermann steer angle. The Ackermann Steer Angle is the steer angle at which the vehicle would travel about a curve when there is no lateral acceleration required (at negligibly low ...

  5. Slip angle - Wikipedia

    en.wikipedia.org/wiki/Slip_angle

    The ratios between the slip angles of the front and rear axles (a function of the slip angles of the front and rear tires respectively) will determine the vehicle's behavior in a given turn. If the ratio of front to rear slip angles is greater than 1:1, the vehicle will tend to understeer, while a ratio of less than 1:1 will produce oversteer. [2]

  6. Ackermann function - Wikipedia

    en.wikipedia.org/wiki/Ackermann_function

    This inverse Ackermann function f −1 is usually denoted by α. In fact, α ( n ) is less than 5 for any practical input size n , since A (4, 4) is on the order of 2 2 2 2 16 {\displaystyle 2^{2^{2^{2^{16}}}}} .

  7. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Then the angle of the rotation is the angle between v and Rv. A more direct method, however, is to simply calculate the trace : the sum of the diagonal elements of the rotation matrix. Care should be taken to select the right sign for the angle θ to match the chosen axis:

  8. Angular frequency - Wikipedia

    en.wikipedia.org/wiki/Angular_frequency

    A sphere rotating around an axis. Points farther from the axis move faster, satisfying ω = v / r.. In physics, angular frequency (symbol ω), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine function (for example, in oscillations and waves).

  9. Angular distance - Wikipedia

    en.wikipedia.org/wiki/Angular_distance

    Angular distance or angular separation is the measure of the angle between the orientation of two straight lines, rays, or vectors in three-dimensional space, or the central angle subtended by the radii through two points on a sphere.