Search results
Results From The WOW.Com Content Network
In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.
To determine whether a result is statistically significant, a researcher calculates a p-value, which is the probability of observing an effect of the same magnitude or more extreme given that the null hypothesis is true. [5] [12] The null hypothesis is rejected if the p-value is less than (or equal to) a predetermined level, .
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
Although this p-value objectified research outcome, using it as a rigid cut off point can have potentially serious consequences: (i) clinically important differences observed in studies might be statistically non-significant (a type II error, or false negative result) and therefore be unfairly ignored; this often is a result of having a small ...
Statistical significance is formalized in terms of probability, with its p-value measure being reported in the scientific literature as a screening mechanism. Ioannidis posited assumptions about the way people perform and report these tests; then he constructed a statistical model which indicates that most published findings are likely false ...
The solution to this question would be to report the p-value or significance level α of the statistic. For example, if the p-value of a test statistic result is estimated at 0.0596, then there is a probability of 5.96% that we falsely reject H 0.
The research plan might include the research question, the hypothesis to be tested, the experimental design, data collection methods, data analysis perspectives and costs involved. It is essential to carry the study based on the three basic principles of experimental statistics: randomization , replication , and local control.
Data dredging (also known as data snooping or p-hacking) [1] [a] is the misuse of data analysis to find patterns in data that can be presented as statistically significant, thus dramatically increasing and understating the risk of false positives.