Search results
Results From The WOW.Com Content Network
The Einstein–Hilbert action in general relativity is the action that yields the Einstein field equations through the stationary-action principle. With the (− + + +) metric signature , the gravitational part of the action is given as [ 1 ]
Another important action is the Plebanski action (see the entry on the Barrett–Crane model), and proving that it gives general relativity under certain conditions involves showing it reduces to the Palatini action under these conditions. Here we present definitions and calculate Einstein's equations from the Palatini action in detail.
The second-order formalism action is then acquired by substituting this expression for the spin connection back into the action, yielding additional quartic gravitino vertices, with the Einstein–Hilbert and Rarita–Schwinger actions now being written with a torsionless spin connection that explicitly depends on the vielbeins.
Download as PDF; Printable version; In other projects ... the Einstein–Hilbert action for general relativity was first ... S2CID 121043319 [English translation by R ...
Hendrik Lorentz was a major influence on Einstein's theory of special relativity. Lorentz laid the fundamentals for the work by Einstein and the theory was originally called the Lorentz-Einstein theory. After 1905 Lorentz wrote several papers on what he called "Einstein's principle of relativity". Einstein, Albert (1905-06-30).
Maxwell's equations can be derived as conditions of stationary action. The Einstein equation utilizes the Einstein–Hilbert action as constrained by a variational principle. The trajectory (path in spacetime) of a body in a gravitational field can be found using the action principle. For a free falling body, this trajectory is a geodesic.
Hilbert claimed priority for the introduction of the Riemann scalar into the action principle and the derivation of the field equations from it," [B 6] (Sauer mentions a letter and a draft letter where Hilbert defends his priority for the action functional) "and Einstein admitted publicly that Hilbert (and Lorentz) had succeeded in giving the ...
In general, the Lagrangian is that function which when integrated over produces the Action functional. David Hilbert gave an early and classic formulation of the equations in Einstein's general relativity. [2] This used the functional now called the Einstein-Hilbert action.