Search results
Results From The WOW.Com Content Network
An operational amplifier (often op amp or opamp) is a DC-coupled electronic voltage amplifier with a differential input, a (usually) single-ended output, [1] and an extremely high gain. Its name comes from its original use of performing mathematical operations in analog computers .
The settling time for a second order, underdamped system responding to a step response can be approximated if the damping ratio by = () A general form is T s = − ln ( tolerance fraction × 1 − ζ 2 ) damping ratio × natural freq {\displaystyle T_{s}=-{\frac {\ln({\text{tolerance fraction}}\times {\sqrt {1-\zeta ^{2}}})}{{\text ...
A prime example is when the amplifier's output is connected to a capacitive load. Therefore, operational amplifiers are usually compensated to achieve a minimum phase margin of 45° or so. This means that at the frequency at which the open and closed loop gains meet, the phase angle is −135°. The calculation is: -135° - (-180°) = 45°.
In this case a lead-lag compensator will consist of a network of operational amplifiers ("op-amps") connected as integrators and weighted adders. A possible physical realization of a lead-lag compensator is shown below (note that the op-amp is used to isolate the networks):
The operational amplifier integrator is an electronic integration circuit. Based on the operational amplifier (op-amp), it performs the mathematical operation of integration with respect to time; that is, its output voltage is proportional to the input voltage integrated over time.
The LM358 is a low-power dual operational amplifier integrated circuit, originally introduced by National Semiconductor. [1] It uses a single power supply from +3 to +30 volts for V CC (though some variants go higher, such as 36 volts for the LM358B). Input voltage can range from −0.3 volts to V CC.
Many commercial op-amp offerings provide a method for tuning the operational amplifier to balance the inputs (e.g., "offset null" or "balance" pins that can interact with an external voltage source attached to a potentiometer). Alternatively, a tunable external voltage can be added to one of the inputs in order to balance out the offset effect.
The sensors which transimpedance amplifiers are used with usually have more capacitance than an op-amp can handle. The sensor can be modeled as a current source and a capacitor C i. [4] This capacitance across the input terminals of the op-amp, which includes the internal capacitance of the op-amp, introduces a low-pass filter in the feedback path.