Search results
Results From The WOW.Com Content Network
In knowledge representation and reasoning, a knowledge graph is a knowledge base that uses a graph-structured data model or topology to represent and operate on data. Knowledge graphs are often used to store interlinked descriptions of entities – objects, events, situations or abstract concepts – while also encoding the free-form semantics ...
In representation learning, knowledge graph embedding (KGE), also referred to as knowledge representation learning (KRL), or multi-relation learning, [1] is a machine learning task of learning a low-dimensional representation of a knowledge graph's entities and relations while preserving their semantic meaning.
Many of the early approaches to knowledge represention in Artificial Intelligence (AI) used graph representations and semantic networks, similar to knowledge graphs today. In such approaches, problem solving was a form of graph traversal [2] or path-finding, as in the A* search algorithm. Typical applications included robot plan-formation and ...
In natural language processing (NLP), a text graph is a graph representation of a text item (document, passage or sentence). It is typically created as a preprocessing step to support NLP tasks such as text condensation [ 1 ] term disambiguation [ 2 ] (topic-based) text summarization , [ 3 ] relation extraction [ 4 ] and textual entailment .
Knowledge extraction is the creation of knowledge from structured (relational databases, XML) and unstructured (text, documents, images) sources.The resulting knowledge needs to be in a machine-readable and machine-interpretable format and must represent knowledge in a manner that facilitates inferencing.
In this approach, a formula in first-order logic (predicate calculus) is represented by a labeled graph. A linear notation, called the Conceptual Graph Interchange Format (CGIF), has been standardized in the ISO standard for common logic. The diagram above is an example of the display form for a conceptual graph.
Aspects of ontology editors include: visual navigation possibilities within the knowledge model, inference engines and information extraction; support for modules; the import and export of foreign knowledge representation languages for ontology matching; and the support of meta-ontologies such as OWL-S, Dublin Core, etc. [33]
The knowledge base contains domain-specific facts and rules [1] about a problem domain (rather than knowledge implicitly embedded in procedural code, as in a conventional computer program). In addition, the knowledge may be structured by means of a subsumption ontology, frames, conceptual graph, or logical assertions. [2]