Search results
Results From The WOW.Com Content Network
If y=c is a horizontal asymptote of f(x), then y=c+k is a horizontal asymptote of f(x)+k; If a known function has an asymptote, then the scaling of the function also have an asymptote. If y=ax+b is an asymptote of f(x), then y=cax+cb is an asymptote of cf(x) For example, f(x)=e x-1 +2 has horizontal asymptote y=0+2=2, and no vertical or oblique ...
An asymptote is a straight line that a curve approaches but never meets or crosses. Informally, one may speak of the curve meeting the asymptote "at infinity" although this is not a precise definition. In the equation =, y becomes arbitrarily small in magnitude as x increases.
The asymptotic directions are the same as the asymptotes of the hyperbola of the Dupin indicatrix through a hyperbolic point, or the unique asymptote through a parabolic point. [1] An asymptotic direction is a direction along which the normal curvature is zero: take the plane spanned by the direction and the surface's normal at that point. The ...
A sigmoid function is constrained by a pair of horizontal asymptotes as . A sigmoid function is convex for values less than a particular point, and it is concave for values greater than that point: in many of the examples here, that point is 0.
The field of asymptotics is normally first encountered in school geometry with the introduction of the asymptote, a line to which a curve tends at infinity.The word Ασύμπτωτος (asymptotos) in Greek means non-coincident and puts strong emphasis on the point that approximation does not turn into coincidence.
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
Their horizontal position is given by x, much like the position given by a map of the land or by a global positioning system. Their altitude is given by the coordinate y . Suppose they walk towards a position x = p , as they get closer and closer to this point, they will notice that their altitude approaches a specific value L .
The vertical and horizontal lines are asymptotes. In the same way, it can be shown that the reciprocal of a continuous function r = 1 / f {\displaystyle r=1/f} (defined by r ( x ) = 1 / f ( x ) {\displaystyle r(x)=1/f(x)} for all x ∈ D {\displaystyle x\in D} such that f ( x ) ≠ 0 {\displaystyle f(x)\neq 0} ) is continuous in D ∖ { x : f ...