Ad
related to: how far away does earth pull air from water in order
Search results
Results From The WOW.Com Content Network
Atmospheric escape of hydrogen on Earth is due to charge exchange escape (~60–90%), Jeans escape (~10–40%), and polar wind escape (~10–15%), currently losing about 3 kg/s of hydrogen. [1] The Earth additionally loses approximately 50 g/s of helium primarily through polar wind escape. Escape of other atmospheric constituents is much ...
Earth's atmosphere photographed from the International Space Station.The orange and green line of airglow is at roughly the altitude of the Kármán line. [1]The Kármán line (or von Kármán line / v ɒ n ˈ k ɑːr m ɑː n /) [2] is a conventional definition of the edge of space.
Blue light is scattered more than other wavelengths by the gases in the atmosphere, surrounding Earth in a visibly blue layer at the stratosphere, above the clouds of the troposphere, when seen from space on board the ISS at an altitude of 335 km (208 mi) (the Moon is visible as a crescent in the far background). [1]
Earth's magnetic field deflects most of the solar wind, whose charged particles would otherwise strip away the ozone layer that protects the Earth from harmful ultraviolet radiation. [4] One stripping mechanism is for gas to be caught in bubbles of the magnetic field, which are ripped off by solar winds. [ 5 ]
At the 60th parallel, the air rises to the tropopause (about 8 km at this latitude) and moves poleward. As it does so, the upper-level air mass deviates toward the east. When the air reaches the polar areas, it has cooled by radiation to space and is considerably denser than the underlying air. It descends, creating a cold, dry high-pressure area.
For example, as the Earth's rotational velocity is 465 m/s at the equator, a rocket launched tangentially from the Earth's equator to the east requires an initial velocity of about 10.735 km/s relative to the moving surface at the point of launch to escape whereas a rocket launched tangentially from the Earth's equator to the west requires an ...
Earth’s inner core, a red-hot ball of iron 1,800 miles below our feet, stopped spinning recently, and it may now be reversing directions, according to an analysis of seismic activity.
Most water in Earth's atmosphere and crust comes from saline seawater, while fresh water accounts for nearly 1% of the total. The vast bulk of the water on Earth is saline or salt water, with an average salinity of 35‰ (or 3.5%, roughly equivalent to 34 grams of salts in 1 kg of seawater), though this varies slightly according to the amount of runoff received from surrounding land.