Search results
Results From The WOW.Com Content Network
There are several closely related functions called Jacobi theta functions, and many different and incompatible systems of notation for them. One Jacobi theta function (named after Carl Gustav Jacob Jacobi) is a function defined for two complex variables z and τ, where z can be any complex number and τ is the half-period ratio, confined to the upper half-plane, which means it has a positive ...
In mathematics, an elliptic hypergeometric series is a series Σc n such that the ratio c n /c n−1 is an elliptic function of n, analogous to generalized hypergeometric series where the ratio is a rational function of n, and basic hypergeometric series where the ratio is a periodic function of the complex number n.
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.).
The Neville theta functions are related to the Jacobi elliptic functions. If pq(u,m) is a Jacobi elliptic function (p and q are one of s,c,n,d), then If pq(u,m) is a Jacobi elliptic function (p and q are one of s,c,n,d), then
This formula applies to any algebraic equation of any degree without need for a Tschirnhaus transformation or any other manipulation to bring the equation into a specific normal form, such as the Bring–Jerrard form for the quintic. However, application of this formula in practice is difficult because the relevant hyperelliptic integrals and ...
In mathematics, the elliptic gamma function is a generalization of the q-gamma function, which is itself the q-analog of the ordinary gamma function. It is closely related to a function studied by Jackson (1905), and can be expressed in terms of the triple gamma function. It is given by
In mathematics, particularly q-analog theory, the Ramanujan theta function generalizes the form of the Jacobi theta functions, while capturing their general properties. In particular, the Jacobi triple product takes on a particularly elegant form when written in terms of the Ramanujan theta. The function is named after mathematician Srinivasa ...
with the sum on the right similar to the Ramanujan theta function, or Jacobi theta function (). Note that Lambert series in which the a n are trigonometric functions, for example, a n = sin(2n x), can be evaluated by various combinations of the logarithmic derivatives of Jacobi theta functions.