Search results
Results From The WOW.Com Content Network
A fundamental physical constant occurring in quantum mechanics is the Planck constant, h. A common abbreviation is ħ = h /2 π , also known as the reduced Planck constant or Dirac constant . Quantity (common name/s)
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.
The quantum harmonic oscillator; The quantum harmonic oscillator with an applied uniform field [1] The Inverse square root potential [2] The periodic potential The particle in a lattice; The particle in a lattice of finite length [3] The Pöschl–Teller potential; The quantum pendulum; The three-dimensional potentials The rotating system The ...
This allowed the orbits of the electron to be ellipses instead of circles, and introduced the concept of quantum degeneracy. The theory would have correctly explained the Zeeman effect, except for the issue of electron spin. Sommerfeld's model was much closer to the modern quantum mechanical picture than Bohr's.
The category of quantum models encompasses a variety of exactly solvable problems in quantum mechanics. Each exactly solvable problem is of interest for several reasons. It provides a test case for methods applicable to other problems. It can be used as a starting point for perturbation theory.
In the Stern–Gerlach experiment discussed above, the quantum model predicts two possible values of spin for the atom compared to the magnetic axis. These two eigenstates are named arbitrarily 'up' and 'down'. The quantum model predicts these states will be measured with equal probability, but no intermediate values will be seen.
In solid-state physics, the nearly free electron model (or NFE model and quasi-free electron model) is a quantum mechanical model of physical properties of electrons that can move almost freely through the crystal lattice of a solid. The model is closely related to the more conceptual empty lattice approximation.
Semi-empirical quantum chemistry methods Møller–Plesset perturbation theory Configuration interaction Coupled cluster Multi-configurational self-consistent field Quantum chemistry composite methods Quantum Monte Carlo: Density functional theory; Time-dependent density functional theory Thomas–Fermi model Orbital-free density functional theory