Search results
Results From The WOW.Com Content Network
easily adding a new column if many elements of the new column are left blank (if the column is inserted and the existing fields are unnamed, use a named parameter for the new field to avoid adding blank parameter values to many template calls) computing fields from other fields, e.g. population density from population and area
The statistical treatment of count data is distinct from that of binary data, in which the observations can take only two values, usually represented by 0 and 1, and from ordinal data, which may also consist of integers but where the individual values fall on an arbitrary scale and only the relative ranking is important. [example needed]
In order to calculate the average and standard deviation from aggregate data, it is necessary to have available for each group: the total of values (Σx i = SUM(x)), the number of values (N=COUNT(x)) and the total of squares of the values (Σx i 2 =SUM(x 2)) of each groups. [8]
For example, as a function from the integers to the integers, the doubling function () = is not surjective because only the even integers are part of the image. However, a new function f ~ ( n ) = 2 n {\displaystyle {\tilde {f}}(n)=2n} whose domain is the integers and whose codomain is the even integers is surjective.
A function f from X to Y.The blue oval Y is the codomain of f.The yellow oval inside Y is the image of f, and the red oval X is the domain of f.. In mathematics, a codomain or set of destination of a function is a set into which all of the output of the function is constrained to fall.
For functions that are not uniformly continuous, there is a positive real number > such that for every positive real number > there is a point on the graph so that when we draw a rectangle with a height slightly less than and a width slightly less than around that point, there is a function value directly above or below the rectangle. There ...
In computer science, the count-distinct problem [1] (also known in applied mathematics as the cardinality estimation problem) is the problem of finding the number of distinct elements in a data stream with repeated elements. This is a well-known problem with numerous applications.
In the Robinson–Schensted correspondence between permutations and Young tableaux, the length of the first row of the tableau corresponding to a permutation equals the length of the longest increasing subsequence of the permutation, and the length of the first column equals the length of the longest decreasing subsequence. [3]