When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Degenerate conic - Wikipedia

    en.wikipedia.org/wiki/Degenerate_conic

    In geometry, a degenerate conic is a conic (a second-degree plane curve, defined by a polynomial equation of degree two) that fails to be an irreducible curve.This means that the defining equation is factorable over the complex numbers (or more generally over an algebraically closed field) as the product of two linear polynomials.

  3. Degeneracy (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Degeneracy_(mathematics)

    A degenerate conic is a conic section (a second-degree plane curve, defined by a polynomial equation of degree two) that fails to be an irreducible curve. A point is a degenerate circle, namely one with radius 0. [1] The line is a degenerate case of a parabola if the parabola resides on a tangent plane.

  4. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.

  5. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections.It provides easy ways to calculate a conic section's axis, vertices, tangents and the pole and polar relationship between points and lines of the plane determined by the conic.

  6. Pascal's theorem - Wikipedia

    en.wikipedia.org/wiki/Pascal's_theorem

    Degenerate conics follow by continuity (the theorem is true for non-degenerate conics, and thus holds in the limit of degenerate conic). A short elementary proof of Pascal's theorem in the case of a circle was found by van Yzeren (1993), based on the proof in (Guggenheimer 1967). This proof proves the theorem for circle and then generalizes it ...

  7. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    A non-degenerate conic section given by equation can be identified by evaluating . The conic section is: [ 13 ] an ellipse or a circle, if B 2 − 4 A C < 0 {\displaystyle B^{2}-4AC<0} ;

  8. Quadric - Wikipedia

    en.wikipedia.org/wiki/Quadric

    In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.

  9. Category:Conic sections - Wikipedia

    en.wikipedia.org/wiki/Category:Conic_sections

    Pages in category "Conic sections" The following 51 pages are in this category, out of 51 total. ... Degenerate conic; Director circle; Discriminant; Distance of ...