Search results
Results From The WOW.Com Content Network
Plant embryonic development, also plant embryogenesis, is a process that occurs after the fertilization of an ovule to produce a fully developed plant embryo. This is a pertinent stage in the plant life cycle that is followed by dormancy and germination . [ 1 ]
An endosperm is formed after the two sperm nuclei inside a pollen grain reach the interior of a female gametophyte or megagametophyte, also called the embryonic sac.One sperm nucleus fertilizes the egg cell, forming a zygote, while the other sperm nucleus usually fuses with the binucleate central cell, forming a primary endosperm cell (its nucleus is often called the triple fusion nucleus).
In plants, organogenesis occurs continuously and only stops when the plant dies. In the shoot, the shoot apical meristems regularly produce new lateral organs (leaves or flowers) and lateral branches. In the root, new lateral roots form from weakly differentiated internal tissue (e.g. the xylem-pole pericycle in the model plant Arabidopsis ...
From that point, it begins to divide to form a plant embryo through the process of embryogenesis. As this happens, the resulting cells will organize so that one end becomes the first root while the other end forms the tip of the shoot. In seed plants, the embryo will develop one or more "seed leaves" . By the end of embryogenesis, the young ...
Somatic embryogenesis has served as a model to understand the physiological and biochemical events that occur during plant developmental processes as well as a component to biotechnological advancement. [4] The first documentation of somatic embryogenesis was by Steward et al. in 1958 and Reinert in 1959 with carrot cell suspension cultures. [5 ...
During embryogenesis, for a number of cell cleavages (the specific number depends on the type of organism) all the cells of an embryo will be morphologically and developmentally equivalent. This means, each cell has the same development potential and all cells are essentially interchangeable, thus establishing an equivalence group .
Plants can also break down hormones chemically, effectively destroying them. Plant hormones frequently regulate the concentrations of other plant hormones. [14] Plants also move hormones around the plant diluting their concentrations. The concentration of hormones required for plant responses are very low (10 −6 to 10 −5 mol/L).
Late embryogenesis abundant proteins (LEA proteins) are proteins in plants, and some bacteria and invertebrates, that protect against protein aggregation due to desiccation or osmotic stresses associated with low temperature. [1] [2] [3] LEA proteins were initially discovered accumulating late in embryogenesis of cotton seeds. [4]