When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Active site - Wikipedia

    en.wikipedia.org/wiki/Active_site

    The active site consists of amino acid residues that form temporary bonds with the substrate, the binding site, and residues that catalyse a reaction of that substrate, the catalytic site. Although the active site occupies only ~10–20% of the volume of an enzyme, [ 1 ] : 19 it is the most important part as it directly catalyzes the chemical ...

  3. Enzyme catalysis - Wikipedia

    en.wikipedia.org/wiki/Enzyme_catalysis

    Enzyme catalysis is the increase in the rate of a process by an "enzyme", a biological molecule. Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, called the active site.

  4. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    Mechanisms of catalysis include catalysis by bond strain; by proximity and orientation; by active-site proton donors or acceptors; covalent catalysis and quantum tunnelling. [42] [55] Enzyme kinetics cannot prove which modes of catalysis are used by an enzyme. However, some kinetic data can suggest possibilities to be examined by other techniques.

  5. Catalysis - Wikipedia

    en.wikipedia.org/wiki/Catalysis

    A heterogeneous catalyst has active sites, which are the atoms or crystal faces where the substrate actually binds. Active sites are atoms but are often described as a facet (edge, surface, step, etc.) of a solid. Most of the volume but also most of the surface of a heterogeneous catalyst may be catalytically inactive.

  6. Catalytic triad - Wikipedia

    en.wikipedia.org/wiki/Catalytic_triad

    The sophistication of the active site network causes residues involved in catalysis (and residues in contact with these) to be highly evolutionarily conserved. [62] However, many examples of divergent evolution in catalytic triads exist, both in the reaction catalysed, and the residues used in catalysis.

  7. Turnover number - Wikipedia

    en.wikipedia.org/wiki/Turnover_number

    In enzymology, the turnover number (k cat) is defined as the limiting number of chemical conversions of substrate molecules per second that a single active site will execute for a given enzyme concentration [E T] for enzymes with two or more active sites. [1] For enzymes with a single active site, k cat is referred to as the catalytic constant. [2]

  8. Binding site - Wikipedia

    en.wikipedia.org/wiki/Binding_site

    Glucose binds to hexokinase in the active site at the beginning of glycolysis. In biochemistry and molecular biology, a binding site is a region on a macromolecule such as a protein that binds to another molecule with specificity. [1] The binding partner of the macromolecule is often referred to as a ligand. [2]

  9. Threonine protease - Wikipedia

    en.wikipedia.org/wiki/Threonine_protease

    Threonine proteases use the secondary alcohol of their N-terminal threonine as a nucleophile to perform catalysis. [1] [2] The threonine must be N-terminal since the terminal amine of the same residue acts as a general base by polarising an ordered water which deprotonates the alcohol to increase its reactivity as a nucleophile.