When.com Web Search

  1. Ad

    related to: formula to calculate gravitational force equation worksheet solutions pdf

Search results

  1. Results From The WOW.Com Content Network
  2. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  3. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    To make this into an equal-sided formula or equation, there needed to be a multiplying factor or constant that would give the correct force of gravity no matter the value of the masses or distance between them (the gravitational constant). Newton would need an accurate measure of this constant to prove his inverse-square law.

  4. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  5. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    In astrodynamics, the vis-viva equation is one of the equations that model the motion of orbiting bodies.It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is its own weight which is the gravitational force determined by the product of the mass of the object and the strength of the surrounding gravitational field.

  6. Gauss's law for gravity - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law_for_gravity

    Then the differential form of Gauss's law for gravity becomes Poisson's equation: =. This provides an alternate means of calculating the gravitational potential and gravitational field. Although computing g via Poisson's equation is mathematically equivalent to computing g directly from Gauss's law, one or the other approach may be an easier ...

  7. Schwarzschild radius - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_radius

    The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass.

  8. Geopotential spherical harmonic model - Wikipedia

    en.wikipedia.org/wiki/Geopotential_spherical...

    For this the gravitational force, i.e. the gradient of the potential, must be computed. Efficient recursive algorithms have been designed to compute the gravitational force for any N z {\displaystyle N_{z}} and N t {\displaystyle N_{t}} (the max degree of zonal and tesseral terms) and such algorithms are used in standard orbit propagation software.

  9. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    Newton illustrates his formula with three examples. In the first two, the central force is a power law, F(r) = r n−3, so C(r) is proportional to r n. The formula above indicates that the angular motion is multiplied by a factor k = 1/ √ n, so that the apsidal angle α equals 180°/ √ n.