When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Invertible matrix - Wikipedia

    en.wikipedia.org/wiki/Invertible_matrix

    Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix. [2] Over a field, a square matrix that is not invertible is called singular or degenerate. A square matrix with entries in a field is singular if and only if its determinant is zero.

  3. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    A square matrix A is called invertible or non-singular if there exists a matrix B such that [28] [29] = =, where I n is the n×n identity matrix with 1s on the main diagonal and 0s elsewhere. If B exists, it is unique and is called the inverse matrix of A, denoted A −1.

  4. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Synonym for (0,1)-matrix, binary matrix or Boolean matrix. Can be used to represent a k-adic relation. Markov matrix: A matrix of non-negative real numbers, such that the entries in each row sum to 1. Metzler matrix: A matrix whose off-diagonal entries are non-negative. Monomial matrix: A square matrix with exactly one non-zero entry in each ...

  5. Tridiagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix

    For example, the following matrix is tridiagonal: (). The determinant of a tridiagonal matrix is ... The inverse of a non-singular tridiagonal matrix T = ...

  6. Diagonal matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonal_matrix

    An identity matrix of any size, or any multiple of it is a diagonal matrix called a scalar matrix, for example, []. In geometry , a diagonal matrix may be used as a scaling matrix , since matrix multiplication with it results in changing scale (size) and possibly also shape ; only a scalar matrix results in uniform change in scale.

  7. Unimodular matrix - Wikipedia

    en.wikipedia.org/wiki/Unimodular_matrix

    1. The unoriented incidence matrix of a bipartite graph, which is the coefficient matrix for bipartite matching, is totally unimodular (TU). (The unoriented incidence matrix of a non-bipartite graph is not TU.) More generally, in the appendix to a paper by Heller and Tompkins, [2] A.J. Hoffman and D. Gale prove the following.

  8. Symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Symmetric_matrix

    Every real non-singular matrix can be uniquely factored as the product of an orthogonal matrix and a symmetric positive definite matrix, which is called a polar decomposition. Singular matrices can also be factored, but not uniquely.

  9. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The inflection points of the curve are exactly the non-singular points where the Hessian determinant is zero. It follows by Bézout's theorem that a cubic plane curve has at most 9 inflection points, since the Hessian determinant is a polynomial of degree 3.